ECD1 ПИД-регулятор
ECD2 ПИД-регулятор 2х канальный
ECV1 ПИД-регулятор для КЗР
ECD8-L Измеритель-регулятор 8ми канальный c функцией архивирования
ECD4-L Измеритель-регулятор 4х канальный c функцией архивирования
EWM Преобразователи сигналов тенезодатчиков
ELV1 Регулятор уровня жидкости многофункциональный
ELV3 Сигнализатор уровня 3х канальный
ELV-POOL Регулятор уровня воды для переливных бассейнов
EPL1 Контроллер управления насосами
ETC Таймер реального времени
ELHART: TRE-C термосопротивление c кабелем
ИГЛЫ
PTE5000С Датчик давления ELHART
HTE.PF датчики влажности и температуры
VLS-C Вибрационный сигнализатор уровня компактного исполнения
CLS.C01: Подвесной кондуктометрический датчик уровня
CLS.H01: Стержневой кондуктометрический датчик уровня, аксессуары
ELS Электромагнитный датчик уровня
UDB: датчик контроля двойного листа
UDS.12: Ультразвуковые датчики расстояния
UDS.18: Ультразвуковой датчик расстояния
UDS.30: Ультразвуковой датчик расстояния
EMD-MINI Преобразователь частоты
EMD-PUMP Преобразователь частоты для насосов
EMD-VL, EMD-VH Преобразователь частоты векторный
DCC Дроссель постоянного тока
MC Моторный дроссель
EMD-MINI — RCP Выносной пульт управления для ПЧ ELHART серии EMD-MINI
EMD-PUMP — RCP Пульт управления для ПЧ ELHART серии EMD-PUMP
LC Сетевой дроссель
ECP Панели оператора
ELP Панели оператора
BakeControl — Система управления хлебопекарными печами
КАСКАД КНС — Шкафы управления для систем водоотведения
КАСКАД 10 — Шкафы управления насосом
КОНТУР — Шкафы управления ИТП (расширенная версия)
КОНТУР-С0 — Шкафы управления одним контуром ИТП (отопление или ГВС)
КОНТУР Lite — Шкафы управления ИТП (базовая версия)
LevelMaster — Шкафы управления для контроля уровня в емкостях
PoolMaster 10 — Шкафы управления бассейном
ClimatMaster — Шкафы управления вентиляцией
ESS1-DA-mini Однофазное миниатюрное ТТР (3-32 VDC)
ESS1-DA DHT Компактное ТТР на DIN-рейку (4-32 VDC)
ESS1-AA Однофазное ТТР (90-250 VAC)
ESS1-LA Однофазное ТТР (4-20мА) 0-380 VAC
ESS1-UA S Однофазное ТТР (0-10 VDC)
ESS3-DA Трехфазное ТТР (3-32 VDC)
ESS3-AA Трехфазное ТТР (90-250 VAC)
ESS1-DA Однофазное ТТР (3-32 VDC)
ESS1-DD Однофазное ТТР (5-32 VDC)
ESS1-PA Однофазное ТТР (0-470/560 кОм) 10-440 VAC
ESH1-DA Однофазное силовое ТТР (3-32 VDC)
ESH1-DAH Однофазное силовое реле до 1200VAC (3-32 VDC)
Радиаторы охлаждения для SSR ELHART
EMD-MINI – 004 S Преобразователь частоты ELHART (0,4кВт, 2,5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
9 141
Купить
EMD-MINI – 004 T Преобразователь частоты ELHART (0,4кВт, 1,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
12 650
Купить
EMD-MINI – 007 S Преобразователь частоты ELHART (0,75кВт, 5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
9 599
Купить
EMD-MINI – 007 T Преобразователь частоты ELHART (0,75кВт, 2,7А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
13 026
Купить
EMD-MINI – 015 S Преобразователь частоты ELHART (1,5кВт, 7А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
10 213
Купить
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
14 374
Купить
EMD-MINI – 022 S Преобразователь частоты ELHART (2,2кВт, 11А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
14 878
Купить
EMD-MINI – 022 T Преобразователь частоты ELHART (2,2 кВт, 5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
15 302
Купить
EMD-MINI – 037 T Преобразователь частоты ELHART (3,7 кВт, 8,6А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
20 850
Купить
EMD-MINI – 055 T Преобразователь частоты ELHART (5,5 кВт, 12,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
22 721
Купить
EMD-MINI – 075 T Преобразователь частоты ELHART (7,5 кВт, 17,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
В наличии
30 376
Купить
EMD-MINI – 110 T Преобразователь частоты ELHART (11 кВт, 24А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
В наличии
36 572
Купить
Содержание
- Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
- 1. Способы подачи сигналов управления на частотный преобразователь
- 2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
- Режим 1
- Режим 2
- 3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
- Режим 1
- Режим 2
- 4. Задание частоты
- Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
- Задание частоты командами «Больше/Меньше»
- 5. Устранение типовых неполадок в работе частотного преобразователя
1. Способы подачи сигналов управления на частотный преобразователь
Преобразователь частоты ELHART EMD-Mini имеет встроенную несъемную панель управления. С этой панели доступен весь функционал частотника (настройки, управление). По умолчанию частотный преобразователь настроен на управление двигателем со встроенной панели (кнопка RUN/STOP, встроенный потенциометр). Потенциометр настроен на регулировку частоты от 0 до 50 Гц (максимальной частоты).
Рисунок 1 — Преобразователи частоты ELHART EMD-MINI
Управление частотным инвертором со встроенной панели имеет свои недостатки:
- Так как преобразователь предназначен для установки в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто частотник устанавливается рядом с двигателем, а пульт оператора находится в стороне.
ПЧ ELHART позволяет настроить подачу команд управления со встроенной панели, интерфейса RS-485, а так же на программируемых дискретных входах, в этом материале речь пойдет именно о них.
Указания по монтажу сигналов управления к частотному преобразователю:
- Управляющий кабель должен быть размещен отдельно от кабелей силовой части.
- Применяйте для подключения к дискретным входам только высококачественные коммутационные элементы, исключающие дребезг контактов.
- Для предотвращения помех используйте экранированные провода с сечением 0,75 мм².
- Не подавайте внешнее напряжение на клеммы управляющих сигналов.
- Максимальная длина управляющих цепей 30 м.
В частотном инверторе EMD-MINI есть 4 программируемых дискретных входа FWD, REV, S1 и S2. Принципиальных отличий между входами нет, так как функции настроек для всех входов даны одинаковы. Для управления с дискретных входов необходимо использовать переключатели типа «сухой контакт» (кнопка, концевик, релейный выход). Если источник управления встроенная панель — пуск, останов, смена направления движения с дискретных входов невозможна. Если источник управления дискретные входы, пуск со встроенной панели невозможен.
Кнопку «Стоп» на панели частотника можно заблокировать (Р103=0 — кнопка заблокирована, Р103=1 — кнопка активна). По умолчанию кнопка активна. Возможно подключение кнопок управления по двухпроводной и трехпроводной схеме.
2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
Режим 1
Таблица 1 — Работа ПЧ в режиме 1 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Выкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Вкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=7 — Вход REV = вращение в обратном направлении.
В схеме можно применить переключатель «Джойстик» EMAS CP101DJ20 на 2 направления с фиксацией. (2НО). Среднее положение — стоп, или переключатель с фиксацией II-0-I EMAS B101S30
Режим 2
Таблица 2 — Работа ПЧ в режиме 2 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Вкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Выкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=4 — Вход REV = изменение направления вращения.
В этой схеме пока замкнут контакт К1 двигатель вращается. Если К2 разомкнут — вращение происходит в прямом направлении, если К2 замкнут — в обратном. В схеме можно применить 2 переключателя с фиксацией 0-I, например, переключатель B100S20, B100C, или тумблер МА111.
3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
Режим 1
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=6 — Вход S1 = вращение в прямом направлении;
- Р318=7 — Вход S2 = вращение в обратном направлении.
В схеме могут быть применены 2 кнопки без фиксации B100DH для запуска вращения и кнопка красная с НЗ контактом, например, кнопка B200DK для остановки.
Также для запуска можно применить переключатель без фиксации II-0-I B101S32 или переключатель «Джойстик» CP101DJ21 на 2 направления без фиксации. Переключение влево — вращение в одну сторону, вправо — в другую.
Режим 2
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=5 — Вход S1 = команда «Пуск» (НО);
- Р318=4 — Вход S2 = изменение направления вращения (кнопка НО с фиксацией).
В схеме может быть применена сдвоенная кнопка пуск/стоп EMAS B102K20KY. Где НЗ
контакт К3 — «Стоп», НО контакт К1 — «Пуск», НО контакт К2 — «Реверс» (переключатель с фиксацией, например, B100S20).
Контакт К2 не запускает двигатель, а лишь меняет направление вращения (в замкнутом состоянии). Параметр Р104 позволяет запретить реверс (по умолчанию разрешен).
Преобразователь частоты имеет возможность производить автостарт после подачи питания. Для этого необходимо в параметре Р416 установить 1 (автостарт разрешен). Также необходимо обеспечить постоянную подачу сигнала «ПУСК». Установить P102=1, то есть источником сигнала «ПУСК» будет дискретный вход и использовать кнопку с фиксацией для подачи сигнала на дискретный вход. Дискретный вход, на который будет подан сигнал «ПУСК», должен иметь функцию «5» либо «6» (см. P315-P318). Для автоматического запуска частотный преобразователь должен быть полностью выключен (при кратковременном пропадании питания ПЧ выдаст ошибку «Lu3» и не запустится).
Преобразователь частоты имеет возможность защиты от изменения параметров неквалифицированным персоналом. Если P118 =1, то все параметры заблокированы, параметры не могут быть изменены за исключением P100 (предустановленная выходная частота).
4. Задание частоты
Задание частоты возможно со встроенного потенциометра, внешними кнопками (больше/меньше), внешним потенциометром, сигналами 0-10 В, 4-20 мА, кнопками (больше/меньше) со встроенной панели, через интерфейс RS-485. Для использования внешнего потенциометра необходимо в качестве источника задания выходной частоты выбрать аналоговый сигнал 0..10 В (Р101=1). Внешний потенциометр для частотных преобразователей используется номиналом 5 либо 10 кОм. Рекомендуется использовать потенциометр EMAS BPR05K или BPR10K.
Рисунок 4 — Задание частоты сигналом 0. 10 В внешним потенциометром
Подключая внешний потенциометр мы подаем на аналоговый вход сигнал от 0 до 10 В (потенциометр выступает в роли делителя напряжения). Если используется не весь диапазон частот (от 0 до Fmax), то можно настроить частоту при минимальном и максимальном сигнале потенциометра. Пример настройки на управление частотой в диапазоне 20-45 Гц (см. рис. 5).
Рисунок 5 — График задания частоты
- Р310=20 (частота при минимальном сигнале);
- Р312=45 (частота при максимальном сигнале).
Также можно настроить на работу с прямым и обратным вращением двигателя. Пример настройки вращения от 25 Гц в одном направлении до 40 Гц в другом. При положении ручки потенциометра 0% двигатель вращается в обратном направлении на частоте 25 Гц. Пропорционально вращению ручки потенциометра двигатель замедляется, останавливается и начинает вращаться в прямом направлении. При положении ручки 100% достигается частота 40 Гц с вращением в прямом направлении (см. рис. 6).
Рисунок 6 — График задания частоты
- Р310=25 (частота при минимальном сигнале);
- Р311=1 (направление вращения при минимальном сигнале = обратное);
- Р312=40 (частота при максимальном сигнале);
- Р314=1 (при аналоговом сигнале реверс разрешен).
Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
Фиксированная частота используется в качестве задания выходной частоты, когда параметр P101=0. Во время работы ПЧ выходную частоту можно изменять кнопками «Вверх/Вниз» (расположенными на встроенной панели управления). После отключения питания значение частоты вернётся на значение в параметре P100, если P812=1. После отключения питания значение частоты заданной кнопками «Вверх/Вниз» сохраняется, если P812=0 (задано по умолчанию).
Задание частоты командами «Больше/Меньше»
Выходная частота задаётся сигналами «Вверх/Вниз», подключенными к программируемым дискретным входам (см. рис 7).
Рисунок 7 — Задание частоты через дискретные входы (команды «Больше/Меньше»)
Для конфигурации входов, необходимо изменить параметры:
- Р101=4 — источник задания выходной частоты = внешние кнопки «Вверх/Вниз»;
- P317=15 — вход S1 запрограммирован на сигнал «Вверх», то есть увеличение заданной частоты;
- P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты.
При замыкании контакта «Вверх» происходит увеличение заданной частоты, при замыкании контакта «Вниз» происходит уменьшение заданной частоты. Для сохранения заданной частоты после отключения питания необходимо установить соответствующий параметр P812=0 (установлен по умолчанию) (см. рис. 8).
Рисунок 8 — Задание частоты командами «Больше/Меньше»
Выносной пульт EMD-Mini RCP имеет абсолютно те же функции и возможности, что и панель управления на самом частотнике.
Пульт ELHART EMD-Mini RCP
При подключении пульта EMD-Mini RCP показания на встроенной панели и внешнем пульте дублируются (отображаются синхронно). При этом кнопки и потенциометр на встроенной панели не активны. Управление и настройки происходят только с внешнего пульта.
Пульт ELHART EMD-Mini P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты
Сводная таблица — сравнения способов управления преобразователем частоты
Способ управления | Преимущества | Недостатки |
---|---|---|
Со встроенной панели |
|
|
С пульта EMD-Mini RCP |
|
|
С внешних кнопок/переключателей, потенциометра |
|
|
5. Устранение типовых неполадок в работе частотного преобразователя
Если причины возникновения неполадки не известны, то рекомендуется произвести сброс параметров на заводские значения Р117=8 и провести настройку преобразователя частоты еще раз.
Устранение типовых неполадок в работе
Неполадка | Причина и способ устранения |
---|---|
Параметр не может быть изменен |
|
Электродвигатель не начинает вращение при подаче команды «ПУСК» |
|
Двигатель не работает в режиме вращения в обратном направлении |
|
Двигатель работает в режиме вращения в обратном направлении |
|
Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.
Источник
Главная
/
Каталог товаров
/
/
/
/
/
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EM
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EM
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EM
Удобство и простота эксплуатации
- Наличие встроенного интерфейса RS-485 дает возможность осуществлять удаленное управление частотно-регулируемым электроприводом.
- Возможность подключения выносного пульта управления EMD‑MINI – RCP (не входит в комплект поставки) позволяет реализовать дистанционное управление на расстоянии до 2 метров.
- Компактный размер позволяет установить частотный преобразователь на DIN-рейку. Крепление к DIN-рейке предусмотрено конструкцией.
- Простое и быстрое программирование параметров настройки.
- Встроенный блок питания 10 В постоянного тока для подключения внешнего потенциометра.
- Высокая производительность
- Вольт-частотное (скалярное) управление асинхронным электродвигателем — сохранение постоянства соотношения V/f для обеспечения постоянства величины магнитного поля при различных скоростях.
- Перегрузочная способность 150% номинального тока в течение 60 секунд.
- Выходная частота до 999,9 Гц позволяет реализовать управление высокочастотными электродвигателями.
Функциональность
- Встроенный ПИД-регулятор позволяет непрерывно контролировать параметры технологического процесса (давление, расход, температура и т. д.).
- Спящий режим при работе частотного преобразователя в режиме ПИД-регулирования позволяет экономить потребляемую электроэнергию и сократить износ оборудования.
- Программный режим для задания скорости и направления вращения электродвигателя по заранее заданной программе (до 15 шагов).
- Корректировка вольт-частотной характеристики V/f по трем точкам для адаптации управления под характер нагрузки электродвигателя.
Артикул EMD‑MINI — 015 T
Габаритные размеры, мм
W | H | D | A | B | E | Ød | Масса |
Крепление на DIN-рейку 35 мм |
85 | 180 | 116 | 167 | 72 | 100 | 5,5 | 0,93 |
|
Отзывов ещё нет – ваш может стать первым
Нужна консультация?
Сомневаетесь, подойдет ли вам этот товар?
Существует несколько способов управления частотным преобразователем. В процессе работы ПЧ происходит оперативный контроль следующих функций:
Пуск – Останов
(Старт – Стоп). Управление началом вращения и торможением подключенного двигателя.
Установка скорости.
Настройка рабочей скорости привода.
Аварийный останов.
Аварийное снятие силового питания, сигнал разрешения работы.
Эти изменения в работе ПЧ производятся путем подачи сигналов с внешних устройств либо с панели управления. Остальными параметрами можно управлять исключительно с панели управления, причем некоторые из них активны только при выключенном двигателе.
Способы управления могут быть следующими
:
- управление с помощью клавиатуры (панели управления) частотного преобразователя
- управление с помощью пульта ДУ
- аналоговый вход (изменение текущей скорости вращения двигателя)
- дискретные входы (изменение различных состояний и параметров преобразователя)
- последовательный интерфейс RS-485 либо его аналог
Рассмотрим управление преобразователем на примере ПЧ Prostar PR6000.
Управление через аналоговый вход
В преобразователе частоты PR6000 имеется два аналоговых входа – AI1 и AI2. Это выгодно отличает его от других моделей с одним аналоговым входом.
Вход AI1 может использоваться для управления по напряжению с входным сопротивлением 47 кОм. Вход AI2 имеет выбор, который производится переключателем: токовый вход с входным сопротивлением 500 Ом, или вход по напряжению.
Неправильные сети. Несогласованная сеть.
Сравним формулировку данных от неправильной сети разработанной системы. Она была измерена в точках А и В. Здесь на краях пары резисторов для согласования. Сигнал идет от источника, сталкивается с цепью на кабеле. Это ведет к разрушению импедансов, отражению. В открытой цепи энергия идет назад, вызывает искажение сигнала.
Рис. 8. Сеть несогласована. Форма сигнала отличается от правильной.
Расположение терминатора неправильное.
Резистор согласованный есть, но размещен отлично от другого конца кабеля. Сигнал сталкивается с импедансом и его рассогласованием, соединяется на резисторе. Сопротивление было согласовано с кабельным сопротивлением. Дополнительный кабель дает рассогласование и отражает экран. Другое рассогласование – это другой конец кабеля.
Рис. 9. Сеть с резистором, который размещен неправильно, его сигнал.
Управление через дискретные входы
У преобразователя PR6000 имеется 8 дискретных (цифровых) входов: FWD (вперед/стоп), REW (назад/стоп) и 6 входов DI1…DI6.
Входы FWD и REW могут работать в двух- и трехпроводном режиме, при этом третий провод программируется на одном из входов DI1…DI6. Выбор режима управления скоростью устанавливается в параметре Р077.
Дискретные входы DI1…DI6 являются многофункциональными, они программируются на разные функции, которые запускаются при активации соответствующего входа.
Набор возможных функций: выбор многоскоростного режима, выбор разгона/замедления, включение вращения в режиме JOG вперед/назад, управление остановом, увеличение/уменьшение частоты, вход сигнализации неисправности (аварии), пауза при пуске, трехпроводное управление пуском/стопом, торможение постоянным током, сброс ошибки/сообщения, работа по качающейся частоте, включение/сброс/вход счетчика. Всего можно выбрать до 20 различных параметров, которые устанавливаются в параметрах Р071…Р076 для каждого входа. Активация дискретных входов происходит путем замыкания нужного входа на клемму СОМ. Причем, это может производиться разными способами — выходом контроллера, контактами реле, датчика или ручной кнопки. Дискретные и аналоговые входы показаны ниже.
Управление через последовательный интерфейс
При работе через интерфейс RS-485 преобразователь частоты управляется контроллером либо персональным компьютером через специальный адаптер-преобразователь RS-485/RS-232.
Через этот интерфейс преобразователь может не только принимать команды на изменения параметров и состояния, но и выдавать информацию о своем текущем состоянии на другие устройства. Также по интерфейсу RS-485 может поддерживаться связь с другими преобразователями.
Далее поговорим о способах оперативного управления режимами ПЧ.
Применение частотного преобразователя
Применение частотных преобразователей позволило успешно реализовать эффективные системы регулирования скорости нижеприведенных объектов:
- насосы горячей/холодной воды в системах тепло- и водоснабжения;
- вспомогательные агрегаты котельных, ТЭС, ТЭЦ и котлоагрегатов;
- дробилки, мельницы, экструдеры и мешалки;
- различные песковые и пульповые насосы обогатительных фабрик;
- лифтовые установки;
- центрифуги разных типов;
- производственные линии картона, пленки и прочих ленточных материалов;
- крановое и эскалаторное оборудование;
- механизмы силовых манипуляторов;
- приводы буровых станков, специализированного оборудования и т.д.
В начале статьи уже было рассмотрено, для чего нужен частотный преобразователь, а на данном этапе освещения вопроса остается подчеркнуть, что этот тип оборудования позволяет получить существенный экономический эффект:
- экономия до 50% электроэнергии в агрегатах путем поддержания двигателя в режиме оптимального КПД;
- увеличение объема и оптимизация качества выпускаемой продукции;
- повышение уровня производительности производственного оборудования;
- снижение степени износа механических звеньев;
- продление срока эксплуатации технологического оборудования, коммутационной аппаратуры.
В конечном итоге, назначение преобразователя частоты – это обеспечение максимально эффективной и продуктивной работы оборудования со всеми вытекающими положительными аспектами.
Старт/Стоп двигателя
Запуск и останов двигателя может производиться следующими способами.
- С панели управления преобразователя частоты. Для этого используются кнопки RUN, STOP/RESET. Если нужен кратковременный запуск, используется кнопка JOG.
- Подачей сигнала на дискретные входы FWD, REW при двухпроводном управлении. Для трехпроводного управления нужно задействовать один из дискретных входов DI1…DI6 и запрограммировать его соответствующим образом. Режим выбирается параметром Р077. Любой из этих входов можно также использовать для импульсного запуска (команда JOG). При двухпроводном управлении для работы двигателя необходим постоянный сигнал на соответствующих входах. При трехпроводном достаточно кратковременного сигнала.
- Через последовательный интерфейс командами с контроллера. Выбор источника команды Старт/Стоп в ПЧ Prostar PR6000 производится в параметре Р006.
Двухпроводное управление пуском/остановом
Трехпроводное управление пуском/остановом
Удлиненные ответвители.
Кабель согласован, нагружен передатчик на витую пару одну. Проводной сегмент в точке подключения приемника слишком длинный. Большие ответвители оказывают большое рассогласование импеданса и отражают сигнал. Ответвители делают наименьшей длины.
Рис. 11. Сеть с трехметровым ответвителем и сигнал в итоге в сравнении с сигналом с маленьким ответвителем.
Управление частотой
ПЧ может управлять скоростью несколькими способами в зависимости от конкретного оборудования.
- Управление скоростью при помощи переменного резистора, установленного на клавиатуре (панели управления) ПЧ.
- Дискретное изменение при помощи клавиш панели управления Вверх/Вниз.
- Дискретное изменение при помощи контактов (любых двух), подключенных ко входам DI1…DI6. При активации соответствующего дискретного входа происходит уменьшение либо увеличение скорости в заданных пределах с заданным шагом. Примечание. В вариантах 2 и 3 при включении питания двигатель запускается на частоту, установленную в параметре Р005. В процессе работы частоту можно оперативно изменять. Если измененное значение частоты необходимо запомнить, используется параметр Р155.
- Задание скорости при помощи аналоговых сигналов напряжения или тока, поступающих на входы AI1, AI2. Аналоговые сигналы могут комбинироваться в разных вариантах.
- Задание в соответствии с частотой импульсов на входе DI6.
- Через интерфейс RS-485 от контроллера. Выбор канала управления частотой осуществляется параметром Р004. Верхняя и нижняя рабочие частоты устанавливаются в параметрах Р009 и Р010. Скорость работы двигателя в импульсном (толчковом) режиме JOG задается параметром Р052.
Способы контроля
Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.
Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:
- U/f – вольт на герц;
- U/f с энкодером;
- Векторное управление с разомкнутым контуром;
- Векторное управление с замкнутым контуром;
Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.
Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. Транзисторы с изолированным затвором (IGBT) путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.
В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.
Аварийный останов ПЧ
Кроме штатного останова функцией Стоп с заданным замедлением используются два способа экстренного останова двигателя и отключения ПЧ.
- Аварийный останов прерыванием питания. Для этого производители рекомендуют перед силовым питанием ПЧ устанавливать трехфазный линейный контактор, питание катушки которого зависит от состояния аварийной цепи всего оборудования. При нажатии на кнопку «Аварийный останов» или другом экстренном случае питание контактора отключается, и напряжение с ПЧ снимается. Таким образом двигатель гарантированно остановится.
- Используется функция дискретного входа DI1…DI6 «Сигнализация неисправности внешнего устройства». Если запрограммировать нужный вход на эту функцию, в случае подачи на него аварийного сигнала преобразователь остановится.
Другие полезные материалы:
Тонкости настройки преобразователя частоты FAQ по электродвигателям Настройка преобразователя частоты для работы на несколько двигателей Назначение и виды энкодеров
Кабели составные.
Проблема состоит в драйверах, которые разработаны чтобы управлять одной витой парой. Не любой передатчик может управлять 4-мя витыми параллельными парами. Уровни логические минимальные не гарантируются. Вместе с большой нагрузкой есть различие импедансов в месте, где соединены кабели. Различие импедансов значит отражение и искажение сигнала.
Рис. 10. Некорректная сеть с несколькими парами.
( 1 оценка, среднее 4 из 5 )
Содержание
- Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
- 1. Способы подачи сигналов управления на частотный преобразователь
- 2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
- Режим 1
- Режим 2
- 3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
- Режим 1
- Режим 2
- 4. Задание частоты
- Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
- Задание частоты командами «Больше/Меньше»
- 5. Устранение типовых неполадок в работе частотного преобразователя
Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
1. Способы подачи сигналов управления на частотный преобразователь
Преобразователь частоты ELHART EMD-Mini имеет встроенную несъемную панель управления. С этой панели доступен весь функционал частотника (настройки, управление). По умолчанию частотный преобразователь настроен на управление двигателем со встроенной панели (кнопка RUN/STOP, встроенный потенциометр). Потенциометр настроен на регулировку частоты от 0 до 50 Гц (максимальной частоты).
Рисунок 1 — Преобразователи частоты ELHART EMD-MINI
Управление частотным инвертором со встроенной панели имеет свои недостатки:
- Так как преобразователь предназначен для установки в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто частотник устанавливается рядом с двигателем, а пульт оператора находится в стороне.
ПЧ ELHART позволяет настроить подачу команд управления со встроенной панели, интерфейса RS-485, а так же на программируемых дискретных входах, в этом материале речь пойдет именно о них.
Указания по монтажу сигналов управления к частотному преобразователю:
- Управляющий кабель должен быть размещен отдельно от кабелей силовой части.
- Применяйте для подключения к дискретным входам только высококачественные коммутационные элементы, исключающие дребезг контактов.
- Для предотвращения помех используйте экранированные провода с сечением 0,75 мм².
- Не подавайте внешнее напряжение на клеммы управляющих сигналов.
- Максимальная длина управляющих цепей 30 м.
В частотном инверторе EMD-MINI есть 4 программируемых дискретных входа FWD, REV, S1 и S2. Принципиальных отличий между входами нет, так как функции настроек для всех входов даны одинаковы. Для управления с дискретных входов необходимо использовать переключатели типа «сухой контакт» (кнопка, концевик, релейный выход). Если источник управления встроенная панель — пуск, останов, смена направления движения с дискретных входов невозможна. Если источник управления дискретные входы, пуск со встроенной панели невозможен.
Кнопку «Стоп» на панели частотника можно заблокировать (Р103=0 — кнопка заблокирована, Р103=1 — кнопка активна). По умолчанию кнопка активна. Возможно подключение кнопок управления по двухпроводной и трехпроводной схеме.
2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
Режим 1
Таблица 1 — Работа ПЧ в режиме 1 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Выкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Вкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=7 — Вход REV = вращение в обратном направлении.
В схеме можно применить переключатель «Джойстик» EMAS CP101DJ20 на 2 направления с фиксацией. (2НО). Среднее положение — стоп, или переключатель с фиксацией II-0-I EMAS B101S30
Режим 2
Таблица 2 — Работа ПЧ в режиме 2 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Вкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Выкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=4 — Вход REV = изменение направления вращения.
В этой схеме пока замкнут контакт К1 двигатель вращается. Если К2 разомкнут — вращение происходит в прямом направлении, если К2 замкнут — в обратном. В схеме можно применить 2 переключателя с фиксацией 0-I, например, переключатель B100S20, B100C, или тумблер МА111.
3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
Режим 1
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=6 — Вход S1 = вращение в прямом направлении;
- Р318=7 — Вход S2 = вращение в обратном направлении.
В схеме могут быть применены 2 кнопки без фиксации B100DH для запуска вращения и кнопка красная с НЗ контактом, например, кнопка B200DK для остановки.
Также для запуска можно применить переключатель без фиксации II-0-I B101S32 или переключатель «Джойстик» CP101DJ21 на 2 направления без фиксации. Переключение влево — вращение в одну сторону, вправо — в другую.
Режим 2
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=5 — Вход S1 = команда «Пуск» (НО);
- Р318=4 — Вход S2 = изменение направления вращения (кнопка НО с фиксацией).
В схеме может быть применена сдвоенная кнопка пуск/стоп EMAS B102K20KY. Где НЗ
контакт К3 — «Стоп», НО контакт К1 — «Пуск», НО контакт К2 — «Реверс» (переключатель с фиксацией, например, B100S20).
Контакт К2 не запускает двигатель, а лишь меняет направление вращения (в замкнутом состоянии). Параметр Р104 позволяет запретить реверс (по умолчанию разрешен).
Преобразователь частоты имеет возможность производить автостарт после подачи питания. Для этого необходимо в параметре Р416 установить 1 (автостарт разрешен). Также необходимо обеспечить постоянную подачу сигнала «ПУСК». Установить P102=1, то есть источником сигнала «ПУСК» будет дискретный вход и использовать кнопку с фиксацией для подачи сигнала на дискретный вход. Дискретный вход, на который будет подан сигнал «ПУСК», должен иметь функцию «5» либо «6» (см. P315-P318). Для автоматического запуска частотный преобразователь должен быть полностью выключен (при кратковременном пропадании питания ПЧ выдаст ошибку «Lu3» и не запустится).
Преобразователь частоты имеет возможность защиты от изменения параметров неквалифицированным персоналом. Если P118 =1, то все параметры заблокированы, параметры не могут быть изменены за исключением P100 (предустановленная выходная частота).
4. Задание частоты
Задание частоты возможно со встроенного потенциометра, внешними кнопками (больше/меньше), внешним потенциометром, сигналами 0-10 В, 4-20 мА, кнопками (больше/меньше) со встроенной панели, через интерфейс RS-485. Для использования внешнего потенциометра необходимо в качестве источника задания выходной частоты выбрать аналоговый сигнал 0..10 В (Р101=1). Внешний потенциометр для частотных преобразователей используется номиналом 5 либо 10 кОм. Рекомендуется использовать потенциометр EMAS BPR05K или BPR10K.
Рисунок 4 — Задание частоты сигналом 0. 10 В внешним потенциометром
Подключая внешний потенциометр мы подаем на аналоговый вход сигнал от 0 до 10 В (потенциометр выступает в роли делителя напряжения). Если используется не весь диапазон частот (от 0 до Fmax), то можно настроить частоту при минимальном и максимальном сигнале потенциометра. Пример настройки на управление частотой в диапазоне 20-45 Гц (см. рис. 5).
Рисунок 5 — График задания частоты
- Р310=20 (частота при минимальном сигнале);
- Р312=45 (частота при максимальном сигнале).
Также можно настроить на работу с прямым и обратным вращением двигателя. Пример настройки вращения от 25 Гц в одном направлении до 40 Гц в другом. При положении ручки потенциометра 0% двигатель вращается в обратном направлении на частоте 25 Гц. Пропорционально вращению ручки потенциометра двигатель замедляется, останавливается и начинает вращаться в прямом направлении. При положении ручки 100% достигается частота 40 Гц с вращением в прямом направлении (см. рис. 6).
Рисунок 6 — График задания частоты
- Р310=25 (частота при минимальном сигнале);
- Р311=1 (направление вращения при минимальном сигнале = обратное);
- Р312=40 (частота при максимальном сигнале);
- Р314=1 (при аналоговом сигнале реверс разрешен).
Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
Фиксированная частота используется в качестве задания выходной частоты, когда параметр P101=0. Во время работы ПЧ выходную частоту можно изменять кнопками «Вверх/Вниз» (расположенными на встроенной панели управления). После отключения питания значение частоты вернётся на значение в параметре P100, если P812=1. После отключения питания значение частоты заданной кнопками «Вверх/Вниз» сохраняется, если P812=0 (задано по умолчанию).
Задание частоты командами «Больше/Меньше»
Выходная частота задаётся сигналами «Вверх/Вниз», подключенными к программируемым дискретным входам (см. рис 7).
Рисунок 7 — Задание частоты через дискретные входы (команды «Больше/Меньше»)
Для конфигурации входов, необходимо изменить параметры:
- Р101=4 — источник задания выходной частоты = внешние кнопки «Вверх/Вниз»;
- P317=15 — вход S1 запрограммирован на сигнал «Вверх», то есть увеличение заданной частоты;
- P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты.
При замыкании контакта «Вверх» происходит увеличение заданной частоты, при замыкании контакта «Вниз» происходит уменьшение заданной частоты. Для сохранения заданной частоты после отключения питания необходимо установить соответствующий параметр P812=0 (установлен по умолчанию) (см. рис. 8).
Рисунок 8 — Задание частоты командами «Больше/Меньше»
Выносной пульт EMD-Mini RCP имеет абсолютно те же функции и возможности, что и панель управления на самом частотнике.
Пульт ELHART EMD-Mini RCP
При подключении пульта EMD-Mini RCP показания на встроенной панели и внешнем пульте дублируются (отображаются синхронно). При этом кнопки и потенциометр на встроенной панели не активны. Управление и настройки происходят только с внешнего пульта.
Пульт ELHART EMD-Mini P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты
Сводная таблица — сравнения способов управления преобразователем частоты
Способ управления | Преимущества | Недостатки |
---|---|---|
Со встроенной панели |
|
|
С пульта EMD-Mini RCP |
|
|
С внешних кнопок/переключателей, потенциометра |
|
|
5. Устранение типовых неполадок в работе частотного преобразователя
Если причины возникновения неполадки не известны, то рекомендуется произвести сброс параметров на заводские значения Р117=8 и провести настройку преобразователя частоты еще раз.
Устранение типовых неполадок в работе
Неполадка | Причина и способ устранения |
---|---|
Параметр не может быть изменен |
|
Электродвигатель не начинает вращение при подаче команды «ПУСК» |
|
Двигатель не работает в режиме вращения в обратном направлении |
|
Двигатель работает в режиме вращения в обратном направлении |
|
Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.
Источник
EMD-MINI – 004 S Преобразователь частоты ELHART (0,4кВт, 2,5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 004 T Преобразователь частоты ELHART (0,4кВт, 1,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 007 S Преобразователь частоты ELHART (0,75кВт, 5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 007 T Преобразователь частоты ELHART (0,75кВт, 2,7А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 015 S Преобразователь частоты ELHART (1,5кВт, 7А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 022 S Преобразователь частоты ELHART (2,2кВт, 11А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 022 T Преобразователь частоты ELHART (2,2 кВт, 5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 037 T Преобразователь частоты ELHART (3,7 кВт, 8,6А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 055 T Преобразователь частоты ELHART (5,5 кВт, 12,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
EMD-MINI – 075 T Преобразователь частоты ELHART (7,5 кВт, 17,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
EMD-MINI – 110 T Преобразователь частоты ELHART (11 кВт, 24А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
EMD-MINI – 004 S Преобразователь частоты ELHART (0,4кВт, 2,5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
9 036
Купить
EMD-MINI – 004 T Преобразователь частоты ELHART (0,4кВт, 1,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
12 505
Купить
EMD-MINI – 007 S Преобразователь частоты ELHART (0,75кВт, 5А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
9 489
Купить
EMD-MINI – 007 T Преобразователь частоты ELHART (0,75кВт, 2,7А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
12 876
Купить
EMD-MINI – 015 S Преобразователь частоты ELHART (1,5кВт, 7А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
10 096
Купить
EMD-MINI – 015 T Преобразователь частоты ELHART (1,5кВт, 4А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
14 209
Купить
EMD-MINI – 022 S Преобразователь частоты ELHART (2,2кВт, 11А, 220В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
14 707
Купить
EMD-MINI – 022 T Преобразователь частоты ELHART (2,2 кВт, 5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
15 126
Купить
EMD-MINI – 037 T Преобразователь частоты ELHART (3,7 кВт, 8,6А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
20 611
Купить
EMD-MINI – 055 T Преобразователь частоты ELHART (5,5 кВт, 12,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU, монтаж на DIN-рейку), серия EMD-MINI
В наличии
22 460
Купить
EMD-MINI – 075 T Преобразователь частоты ELHART (7,5 кВт, 17,5А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
В наличии
30 026
Купить
EMD-MINI – 110 T Преобразователь частоты ELHART (11 кВт, 24А, 380В, встр. ПИД-регулятор, 4 дискр. входа (NPN), 1 дискр. выход (реле НО, 250В, 3А),1 аналоговый вход 4-20мА/0-10В, поворотный задатчик частоты, RS-485 Modbus RTU), серия EMD-MINI
В наличии
36 151
Купить
Содержание
- Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
- 1. Способы подачи сигналов управления на частотный преобразователь
- 2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
- Режим 1
- Режим 2
- 3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
- Режим 1
- Режим 2
- 4. Задание частоты
- Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
- Задание частоты командами «Больше/Меньше»
- 5. Устранение типовых неполадок в работе частотного преобразователя
1. Способы подачи сигналов управления на частотный преобразователь
Преобразователь частоты ELHART EMD-Mini имеет встроенную несъемную панель управления. С этой панели доступен весь функционал частотника (настройки, управление). По умолчанию частотный преобразователь настроен на управление двигателем со встроенной панели (кнопка RUN/STOP, встроенный потенциометр). Потенциометр настроен на регулировку частоты от 0 до 50 Гц (максимальной частоты).
Рисунок 1 — Преобразователи частоты ELHART EMD-MINI
Управление частотным инвертором со встроенной панели имеет свои недостатки:
- Так как преобразователь предназначен для установки в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто частотник устанавливается рядом с двигателем, а пульт оператора находится в стороне.
ПЧ ELHART позволяет настроить подачу команд управления со встроенной панели, интерфейса RS-485, а так же на программируемых дискретных входах, в этом материале речь пойдет именно о них.
Указания по монтажу сигналов управления к частотному преобразователю:
- Управляющий кабель должен быть размещен отдельно от кабелей силовой части.
- Применяйте для подключения к дискретным входам только высококачественные коммутационные элементы, исключающие дребезг контактов.
- Для предотвращения помех используйте экранированные провода с сечением 0,75 мм².
- Не подавайте внешнее напряжение на клеммы управляющих сигналов.
- Максимальная длина управляющих цепей 30 м.
В частотном инверторе EMD-MINI есть 4 программируемых дискретных входа FWD, REV, S1 и S2. Принципиальных отличий между входами нет, так как функции настроек для всех входов даны одинаковы. Для управления с дискретных входов необходимо использовать переключатели типа «сухой контакт» (кнопка, концевик, релейный выход). Если источник управления встроенная панель — пуск, останов, смена направления движения с дискретных входов невозможна. Если источник управления дискретные входы, пуск со встроенной панели невозможен.
Кнопку «Стоп» на панели частотника можно заблокировать (Р103=0 — кнопка заблокирована, Р103=1 — кнопка активна). По умолчанию кнопка активна. Возможно подключение кнопок управления по двухпроводной и трехпроводной схеме.
2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
Режим 1
Таблица 1 — Работа ПЧ в режиме 1 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Выкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Вкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=7 — Вход REV = вращение в обратном направлении.
В схеме можно применить переключатель «Джойстик» EMAS CP101DJ20 на 2 направления с фиксацией. (2НО). Среднее положение — стоп, или переключатель с фиксацией II-0-I EMAS B101S30
Режим 2
Таблица 2 — Работа ПЧ в режиме 2 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Вкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Выкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=4 — Вход REV = изменение направления вращения.
В этой схеме пока замкнут контакт К1 двигатель вращается. Если К2 разомкнут — вращение происходит в прямом направлении, если К2 замкнут — в обратном. В схеме можно применить 2 переключателя с фиксацией 0-I, например, переключатель B100S20, B100C, или тумблер МА111.
3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
Режим 1
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=6 — Вход S1 = вращение в прямом направлении;
- Р318=7 — Вход S2 = вращение в обратном направлении.
В схеме могут быть применены 2 кнопки без фиксации B100DH для запуска вращения и кнопка красная с НЗ контактом, например, кнопка B200DK для остановки.
Также для запуска можно применить переключатель без фиксации II-0-I B101S32 или переключатель «Джойстик» CP101DJ21 на 2 направления без фиксации. Переключение влево — вращение в одну сторону, вправо — в другую.
Режим 2
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=5 — Вход S1 = команда «Пуск» (НО);
- Р318=4 — Вход S2 = изменение направления вращения (кнопка НО с фиксацией).
В схеме может быть применена сдвоенная кнопка пуск/стоп EMAS B102K20KY. Где НЗ
контакт К3 — «Стоп», НО контакт К1 — «Пуск», НО контакт К2 — «Реверс» (переключатель с фиксацией, например, B100S20).
Контакт К2 не запускает двигатель, а лишь меняет направление вращения (в замкнутом состоянии). Параметр Р104 позволяет запретить реверс (по умолчанию разрешен).
Преобразователь частоты имеет возможность производить автостарт после подачи питания. Для этого необходимо в параметре Р416 установить 1 (автостарт разрешен). Также необходимо обеспечить постоянную подачу сигнала «ПУСК». Установить P102=1, то есть источником сигнала «ПУСК» будет дискретный вход и использовать кнопку с фиксацией для подачи сигнала на дискретный вход. Дискретный вход, на который будет подан сигнал «ПУСК», должен иметь функцию «5» либо «6» (см. P315-P318). Для автоматического запуска частотный преобразователь должен быть полностью выключен (при кратковременном пропадании питания ПЧ выдаст ошибку «Lu3» и не запустится).
Преобразователь частоты имеет возможность защиты от изменения параметров неквалифицированным персоналом. Если P118 =1, то все параметры заблокированы, параметры не могут быть изменены за исключением P100 (предустановленная выходная частота).
4. Задание частоты
Задание частоты возможно со встроенного потенциометра, внешними кнопками (больше/меньше), внешним потенциометром, сигналами 0-10 В, 4-20 мА, кнопками (больше/меньше) со встроенной панели, через интерфейс RS-485. Для использования внешнего потенциометра необходимо в качестве источника задания выходной частоты выбрать аналоговый сигнал 0..10 В (Р101=1). Внешний потенциометр для частотных преобразователей используется номиналом 5 либо 10 кОм. Рекомендуется использовать потенциометр EMAS BPR05K или BPR10K.
Рисунок 4 — Задание частоты сигналом 0. 10 В внешним потенциометром
Подключая внешний потенциометр мы подаем на аналоговый вход сигнал от 0 до 10 В (потенциометр выступает в роли делителя напряжения). Если используется не весь диапазон частот (от 0 до Fmax), то можно настроить частоту при минимальном и максимальном сигнале потенциометра. Пример настройки на управление частотой в диапазоне 20-45 Гц (см. рис. 5).
Рисунок 5 — График задания частоты
- Р310=20 (частота при минимальном сигнале);
- Р312=45 (частота при максимальном сигнале).
Также можно настроить на работу с прямым и обратным вращением двигателя. Пример настройки вращения от 25 Гц в одном направлении до 40 Гц в другом. При положении ручки потенциометра 0% двигатель вращается в обратном направлении на частоте 25 Гц. Пропорционально вращению ручки потенциометра двигатель замедляется, останавливается и начинает вращаться в прямом направлении. При положении ручки 100% достигается частота 40 Гц с вращением в прямом направлении (см. рис. 6).
Рисунок 6 — График задания частоты
- Р310=25 (частота при минимальном сигнале);
- Р311=1 (направление вращения при минимальном сигнале = обратное);
- Р312=40 (частота при максимальном сигнале);
- Р314=1 (при аналоговом сигнале реверс разрешен).
Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
Фиксированная частота используется в качестве задания выходной частоты, когда параметр P101=0. Во время работы ПЧ выходную частоту можно изменять кнопками «Вверх/Вниз» (расположенными на встроенной панели управления). После отключения питания значение частоты вернётся на значение в параметре P100, если P812=1. После отключения питания значение частоты заданной кнопками «Вверх/Вниз» сохраняется, если P812=0 (задано по умолчанию).
Задание частоты командами «Больше/Меньше»
Выходная частота задаётся сигналами «Вверх/Вниз», подключенными к программируемым дискретным входам (см. рис 7).
Рисунок 7 — Задание частоты через дискретные входы (команды «Больше/Меньше»)
Для конфигурации входов, необходимо изменить параметры:
- Р101=4 — источник задания выходной частоты = внешние кнопки «Вверх/Вниз»;
- P317=15 — вход S1 запрограммирован на сигнал «Вверх», то есть увеличение заданной частоты;
- P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты.
При замыкании контакта «Вверх» происходит увеличение заданной частоты, при замыкании контакта «Вниз» происходит уменьшение заданной частоты. Для сохранения заданной частоты после отключения питания необходимо установить соответствующий параметр P812=0 (установлен по умолчанию) (см. рис. 8).
Рисунок 8 — Задание частоты командами «Больше/Меньше»
Выносной пульт EMD-Mini RCP имеет абсолютно те же функции и возможности, что и панель управления на самом частотнике.
Пульт ELHART EMD-Mini RCP
При подключении пульта EMD-Mini RCP показания на встроенной панели и внешнем пульте дублируются (отображаются синхронно). При этом кнопки и потенциометр на встроенной панели не активны. Управление и настройки происходят только с внешнего пульта.
Пульт ELHART EMD-Mini P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты
Сводная таблица — сравнения способов управления преобразователем частоты
Способ управления | Преимущества | Недостатки |
---|---|---|
Со встроенной панели |
|
|
С пульта EMD-Mini RCP |
|
|
С внешних кнопок/переключателей, потенциометра |
|
|
5. Устранение типовых неполадок в работе частотного преобразователя
Если причины возникновения неполадки не известны, то рекомендуется произвести сброс параметров на заводские значения Р117=8 и провести настройку преобразователя частоты еще раз.
Устранение типовых неполадок в работе
Неполадка | Причина и способ устранения |
---|---|
Параметр не может быть изменен |
|
Электродвигатель не начинает вращение при подаче команды «ПУСК» |
|
Двигатель не работает в режиме вращения в обратном направлении |
|
Двигатель работает в режиме вращения в обратном направлении |
|
Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.
Источник
Существует несколько способов управления частотным преобразователем. В процессе работы ПЧ происходит оперативный контроль следующих функций:
Пуск – Останов
(Старт – Стоп). Управление началом вращения и торможением подключенного двигателя.
Установка скорости.
Настройка рабочей скорости привода.
Аварийный останов.
Аварийное снятие силового питания, сигнал разрешения работы.
Эти изменения в работе ПЧ производятся путем подачи сигналов с внешних устройств либо с панели управления. Остальными параметрами можно управлять исключительно с панели управления, причем некоторые из них активны только при выключенном двигателе.
Способы управления могут быть следующими
:
- управление с помощью клавиатуры (панели управления) частотного преобразователя
- управление с помощью пульта ДУ
- аналоговый вход (изменение текущей скорости вращения двигателя)
- дискретные входы (изменение различных состояний и параметров преобразователя)
- последовательный интерфейс RS-485 либо его аналог
Рассмотрим управление преобразователем на примере ПЧ Prostar PR6000.
Управление через аналоговый вход
В преобразователе частоты PR6000 имеется два аналоговых входа – AI1 и AI2. Это выгодно отличает его от других моделей с одним аналоговым входом.
Вход AI1 может использоваться для управления по напряжению с входным сопротивлением 47 кОм. Вход AI2 имеет выбор, который производится переключателем: токовый вход с входным сопротивлением 500 Ом, или вход по напряжению.
Неправильные сети. Несогласованная сеть.
Сравним формулировку данных от неправильной сети разработанной системы. Она была измерена в точках А и В. Здесь на краях пары резисторов для согласования. Сигнал идет от источника, сталкивается с цепью на кабеле. Это ведет к разрушению импедансов, отражению. В открытой цепи энергия идет назад, вызывает искажение сигнала.
Рис. 8. Сеть несогласована. Форма сигнала отличается от правильной.
Расположение терминатора неправильное.
Резистор согласованный есть, но размещен отлично от другого конца кабеля. Сигнал сталкивается с импедансом и его рассогласованием, соединяется на резисторе. Сопротивление было согласовано с кабельным сопротивлением. Дополнительный кабель дает рассогласование и отражает экран. Другое рассогласование – это другой конец кабеля.
Рис. 9. Сеть с резистором, который размещен неправильно, его сигнал.
Управление через дискретные входы
У преобразователя PR6000 имеется 8 дискретных (цифровых) входов: FWD (вперед/стоп), REW (назад/стоп) и 6 входов DI1…DI6.
Входы FWD и REW могут работать в двух- и трехпроводном режиме, при этом третий провод программируется на одном из входов DI1…DI6. Выбор режима управления скоростью устанавливается в параметре Р077.
Дискретные входы DI1…DI6 являются многофункциональными, они программируются на разные функции, которые запускаются при активации соответствующего входа.
Набор возможных функций: выбор многоскоростного режима, выбор разгона/замедления, включение вращения в режиме JOG вперед/назад, управление остановом, увеличение/уменьшение частоты, вход сигнализации неисправности (аварии), пауза при пуске, трехпроводное управление пуском/стопом, торможение постоянным током, сброс ошибки/сообщения, работа по качающейся частоте, включение/сброс/вход счетчика. Всего можно выбрать до 20 различных параметров, которые устанавливаются в параметрах Р071…Р076 для каждого входа. Активация дискретных входов происходит путем замыкания нужного входа на клемму СОМ. Причем, это может производиться разными способами — выходом контроллера, контактами реле, датчика или ручной кнопки. Дискретные и аналоговые входы показаны ниже.
Управление через последовательный интерфейс
При работе через интерфейс RS-485 преобразователь частоты управляется контроллером либо персональным компьютером через специальный адаптер-преобразователь RS-485/RS-232.
Через этот интерфейс преобразователь может не только принимать команды на изменения параметров и состояния, но и выдавать информацию о своем текущем состоянии на другие устройства. Также по интерфейсу RS-485 может поддерживаться связь с другими преобразователями.
Далее поговорим о способах оперативного управления режимами ПЧ.
Применение частотного преобразователя
Применение частотных преобразователей позволило успешно реализовать эффективные системы регулирования скорости нижеприведенных объектов:
- насосы горячей/холодной воды в системах тепло- и водоснабжения;
- вспомогательные агрегаты котельных, ТЭС, ТЭЦ и котлоагрегатов;
- дробилки, мельницы, экструдеры и мешалки;
- различные песковые и пульповые насосы обогатительных фабрик;
- лифтовые установки;
- центрифуги разных типов;
- производственные линии картона, пленки и прочих ленточных материалов;
- крановое и эскалаторное оборудование;
- механизмы силовых манипуляторов;
- приводы буровых станков, специализированного оборудования и т.д.
В начале статьи уже было рассмотрено, для чего нужен частотный преобразователь, а на данном этапе освещения вопроса остается подчеркнуть, что этот тип оборудования позволяет получить существенный экономический эффект:
- экономия до 50% электроэнергии в агрегатах путем поддержания двигателя в режиме оптимального КПД;
- увеличение объема и оптимизация качества выпускаемой продукции;
- повышение уровня производительности производственного оборудования;
- снижение степени износа механических звеньев;
- продление срока эксплуатации технологического оборудования, коммутационной аппаратуры.
В конечном итоге, назначение преобразователя частоты – это обеспечение максимально эффективной и продуктивной работы оборудования со всеми вытекающими положительными аспектами.
Старт/Стоп двигателя
Запуск и останов двигателя может производиться следующими способами.
- С панели управления преобразователя частоты. Для этого используются кнопки RUN, STOP/RESET. Если нужен кратковременный запуск, используется кнопка JOG.
- Подачей сигнала на дискретные входы FWD, REW при двухпроводном управлении. Для трехпроводного управления нужно задействовать один из дискретных входов DI1…DI6 и запрограммировать его соответствующим образом. Режим выбирается параметром Р077. Любой из этих входов можно также использовать для импульсного запуска (команда JOG). При двухпроводном управлении для работы двигателя необходим постоянный сигнал на соответствующих входах. При трехпроводном достаточно кратковременного сигнала.
- Через последовательный интерфейс командами с контроллера. Выбор источника команды Старт/Стоп в ПЧ Prostar PR6000 производится в параметре Р006.
Двухпроводное управление пуском/остановом
Трехпроводное управление пуском/остановом
Удлиненные ответвители.
Кабель согласован, нагружен передатчик на витую пару одну. Проводной сегмент в точке подключения приемника слишком длинный. Большие ответвители оказывают большое рассогласование импеданса и отражают сигнал. Ответвители делают наименьшей длины.
Рис. 11. Сеть с трехметровым ответвителем и сигнал в итоге в сравнении с сигналом с маленьким ответвителем.
Управление частотой
ПЧ может управлять скоростью несколькими способами в зависимости от конкретного оборудования.
- Управление скоростью при помощи переменного резистора, установленного на клавиатуре (панели управления) ПЧ.
- Дискретное изменение при помощи клавиш панели управления Вверх/Вниз.
- Дискретное изменение при помощи контактов (любых двух), подключенных ко входам DI1…DI6. При активации соответствующего дискретного входа происходит уменьшение либо увеличение скорости в заданных пределах с заданным шагом. Примечание. В вариантах 2 и 3 при включении питания двигатель запускается на частоту, установленную в параметре Р005. В процессе работы частоту можно оперативно изменять. Если измененное значение частоты необходимо запомнить, используется параметр Р155.
- Задание скорости при помощи аналоговых сигналов напряжения или тока, поступающих на входы AI1, AI2. Аналоговые сигналы могут комбинироваться в разных вариантах.
- Задание в соответствии с частотой импульсов на входе DI6.
- Через интерфейс RS-485 от контроллера. Выбор канала управления частотой осуществляется параметром Р004. Верхняя и нижняя рабочие частоты устанавливаются в параметрах Р009 и Р010. Скорость работы двигателя в импульсном (толчковом) режиме JOG задается параметром Р052.
Способы контроля
Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.
Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:
- U/f – вольт на герц;
- U/f с энкодером;
- Векторное управление с разомкнутым контуром;
- Векторное управление с замкнутым контуром;
Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.
Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. Транзисторы с изолированным затвором (IGBT) путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.
В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.
Аварийный останов ПЧ
Кроме штатного останова функцией Стоп с заданным замедлением используются два способа экстренного останова двигателя и отключения ПЧ.
- Аварийный останов прерыванием питания. Для этого производители рекомендуют перед силовым питанием ПЧ устанавливать трехфазный линейный контактор, питание катушки которого зависит от состояния аварийной цепи всего оборудования. При нажатии на кнопку «Аварийный останов» или другом экстренном случае питание контактора отключается, и напряжение с ПЧ снимается. Таким образом двигатель гарантированно остановится.
- Используется функция дискретного входа DI1…DI6 «Сигнализация неисправности внешнего устройства». Если запрограммировать нужный вход на эту функцию, в случае подачи на него аварийного сигнала преобразователь остановится.
Другие полезные материалы:
Тонкости настройки преобразователя частоты FAQ по электродвигателям Настройка преобразователя частоты для работы на несколько двигателей Назначение и виды энкодеров
Кабели составные.
Проблема состоит в драйверах, которые разработаны чтобы управлять одной витой парой. Не любой передатчик может управлять 4-мя витыми параллельными парами. Уровни логические минимальные не гарантируются. Вместе с большой нагрузкой есть различие импедансов в месте, где соединены кабели. Различие импедансов значит отражение и искажение сигнала.
Рис. 10. Некорректная сеть с несколькими парами.
( 1 оценка, среднее 4 из 5 )
ECD1 ПИД-регулятор
ECD2 ПИД-регулятор 2х канальный
ECV1 ПИД-регулятор для КЗР
ECD8-L Измеритель-регулятор 8ми канальный c функцией архивирования
ECD4-L Измеритель-регулятор 4х канальный c функцией архивирования
EWM Преобразователи сигналов тенезодатчиков
ELV1 Регулятор уровня жидкости многофункциональный
ELV-POOL Регулятор уровня воды для переливных бассейнов
ELV3 Сигнализатор уровня 3х канальный
EPL1 Контроллер управления насосами
ETC Таймер реального времени
ELHART: TRE-C термосопротивление c кабелем
ИГЛЫ
PTE5000С Датчик давления ELHART
HTE.PF датчики влажности и температуры
VLS-C Вибрационный сигнализатор уровня компактного исполнения
CLS.C01: Подвесной кондуктометрический датчик уровня
CLS.H01: Стержневой кондуктометрический датчик уровня, аксессуары
ELS Электромагнитный датчик уровня
EMD-MINI Преобразователь частоты
EMD-PUMP Преобразователь частоты для насосов
EMD-VL, EMD-VH Преобразователь частоты векторный
DCC Дроссель постоянного тока
MC Моторный дроссель
EMD-MINI — RCP Выносной пульт управления для ПЧ ELHART серии EMD-MINI
EMD-PUMP — RCP Пульт управления для ПЧ ELHART серии EMD-PUMP
LC Сетевой дроссель
ECP Панели оператора
ELP Панели оператора
BakeControl — Система управления хлебопекарными печами
КАСКАД 101 — Шкафы управление насосными станциями (1/2/3 насоса)
КАСКАД 100 — Шкафы управления погружными насосами
КАСКАД КНС — Шкафы управления для систем водоотведения
КАСКАД 10 — Шкафы управления насосом
КОНТУР — Шкафы управления ИТП (расширенная версия)
КОНТУР Lite — Шкафы управления ИТП (базовая версия)
LevelMaster — Шкафы управления для контроля уровня в емкостях
PoolMaster 10 — Шкафы управления бассейном
ClimatMaster — Шкафы управления вентиляцией
ESS3-DA Трехфазное ТТР (3-32 VDC)
ESS1-AA Однофазное ТТР (90-250 VAC)
ESS1-LA Однофазное ТТР (4-20мА) 0-380 VAC
ESS1-UA S Однофазное ТТР (0-10 VDC)
ESS1-DA-mini Однофазное миниатюрное ТТР (3-32 VDC)
ESS1-DA DHT Компактное ТТР на DIN-рейку (4-32 VDC)
ESS1-DA Однофазное ТТР (3-32 VDC)
ESS1-DD Однофазное ТТР (5-32 VDC)
ESS1-PA Однофазное ТТР (0-470/560 кОм) 10-440 VAC
ESH1-DA Однофазное силовое ТТР (3-32 VDC)
ESH1-DAH Однофазное силовое реле до 1200VAC (3-32 VDC)
ESS3-AA Трехфазное ТТР (90-250 VAC)
Радиаторы охлаждения для SSR ELHART
Содержание
- Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
- 1. Способы подачи сигналов управления на частотный преобразователь
- 2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
- Режим 1
- Режим 2
- 3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
- Режим 1
- Режим 2
- 4. Задание частоты
- Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
- Задание частоты командами «Больше/Меньше»
- 5. Устранение типовых неполадок в работе частотного преобразователя
Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
1. Способы подачи сигналов управления на частотный преобразователь
Преобразователь частоты ELHART EMD-Mini имеет встроенную несъемную панель управления. С этой панели доступен весь функционал частотника (настройки, управление). По умолчанию частотный преобразователь настроен на управление двигателем со встроенной панели (кнопка RUN/STOP, встроенный потенциометр). Потенциометр настроен на регулировку частоты от 0 до 50 Гц (максимальной частоты).
Рисунок 1 — Преобразователи частоты ELHART EMD-MINI
Управление частотным инвертором со встроенной панели имеет свои недостатки:
- Так как преобразователь предназначен для установки в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто частотник устанавливается рядом с двигателем, а пульт оператора находится в стороне.
ПЧ ELHART позволяет настроить подачу команд управления со встроенной панели, интерфейса RS-485, а так же на программируемых дискретных входах, в этом материале речь пойдет именно о них.
Указания по монтажу сигналов управления к частотному преобразователю:
- Управляющий кабель должен быть размещен отдельно от кабелей силовой части.
- Применяйте для подключения к дискретным входам только высококачественные коммутационные элементы, исключающие дребезг контактов.
- Для предотвращения помех используйте экранированные провода с сечением 0,75 мм².
- Не подавайте внешнее напряжение на клеммы управляющих сигналов.
- Максимальная длина управляющих цепей 30 м.
В частотном инверторе EMD-MINI есть 4 программируемых дискретных входа FWD, REV, S1 и S2. Принципиальных отличий между входами нет, так как функции настроек для всех входов даны одинаковы. Для управления с дискретных входов необходимо использовать переключатели типа «сухой контакт» (кнопка, концевик, релейный выход). Если источник управления встроенная панель — пуск, останов, смена направления движения с дискретных входов невозможна. Если источник управления дискретные входы, пуск со встроенной панели невозможен.
Кнопку «Стоп» на панели частотника можно заблокировать (Р103=0 — кнопка заблокирована, Р103=1 — кнопка активна). По умолчанию кнопка активна. Возможно подключение кнопок управления по двухпроводной и трехпроводной схеме.
2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
Режим 1
Таблица 1 — Работа ПЧ в режиме 1 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Выкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Вкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=7 — Вход REV = вращение в обратном направлении.
В схеме можно применить переключатель «Джойстик» EMAS CP101DJ20 на 2 направления с фиксацией. (2НО). Среднее положение — стоп, или переключатель с фиксацией II-0-I EMAS B101S30
Режим 2
Таблица 2 — Работа ПЧ в режиме 2 (контакты с фиксацией)
Состояние входных сигналов | Режим работы | |
---|---|---|
К1 | К2 | |
Вкл | Выкл | Вращение в прямом направлении |
Вкл | Вкл | Вращение в обратном направлении |
Выкл | Выкл | Стоп |
Выкл | Вкл | Стоп |
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=6 — Вход FWD = вращение в прямом направлении;
- Р316=4 — Вход REV = изменение направления вращения.
В этой схеме пока замкнут контакт К1 двигатель вращается. Если К2 разомкнут — вращение происходит в прямом направлении, если К2 замкнут — в обратном. В схеме можно применить 2 переключателя с фиксацией 0-I, например, переключатель B100S20, B100C, или тумблер МА111.
3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
Режим 1
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=6 — Вход S1 = вращение в прямом направлении;
- Р318=7 — Вход S2 = вращение в обратном направлении.
В схеме могут быть применены 2 кнопки без фиксации B100DH для запуска вращения и кнопка красная с НЗ контактом, например, кнопка B200DK для остановки.
Также для запуска можно применить переключатель без фиксации II-0-I B101S32 или переключатель «Джойстик» CP101DJ21 на 2 направления без фиксации. Переключение влево — вращение в одну сторону, вправо — в другую.
Режим 2
- Р102=1 — Источник команд управления = программируемые дискретные входы;
- Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
- Р317=5 — Вход S1 = команда «Пуск» (НО);
- Р318=4 — Вход S2 = изменение направления вращения (кнопка НО с фиксацией).
В схеме может быть применена сдвоенная кнопка пуск/стоп EMAS B102K20KY. Где НЗ
контакт К3 — «Стоп», НО контакт К1 — «Пуск», НО контакт К2 — «Реверс» (переключатель с фиксацией, например, B100S20).
Контакт К2 не запускает двигатель, а лишь меняет направление вращения (в замкнутом состоянии). Параметр Р104 позволяет запретить реверс (по умолчанию разрешен).
Преобразователь частоты имеет возможность производить автостарт после подачи питания. Для этого необходимо в параметре Р416 установить 1 (автостарт разрешен). Также необходимо обеспечить постоянную подачу сигнала «ПУСК». Установить P102=1, то есть источником сигнала «ПУСК» будет дискретный вход и использовать кнопку с фиксацией для подачи сигнала на дискретный вход. Дискретный вход, на который будет подан сигнал «ПУСК», должен иметь функцию «5» либо «6» (см. P315-P318). Для автоматического запуска частотный преобразователь должен быть полностью выключен (при кратковременном пропадании питания ПЧ выдаст ошибку «Lu3» и не запустится).
Преобразователь частоты имеет возможность защиты от изменения параметров неквалифицированным персоналом. Если P118 =1, то все параметры заблокированы, параметры не могут быть изменены за исключением P100 (предустановленная выходная частота).
4. Задание частоты
Задание частоты возможно со встроенного потенциометра, внешними кнопками (больше/меньше), внешним потенциометром, сигналами 0-10 В, 4-20 мА, кнопками (больше/меньше) со встроенной панели, через интерфейс RS-485. Для использования внешнего потенциометра необходимо в качестве источника задания выходной частоты выбрать аналоговый сигнал 0..10 В (Р101=1). Внешний потенциометр для частотных преобразователей используется номиналом 5 либо 10 кОм. Рекомендуется использовать потенциометр EMAS BPR05K или BPR10K.
Рисунок 4 — Задание частоты сигналом 0. 10 В внешним потенциометром
Подключая внешний потенциометр мы подаем на аналоговый вход сигнал от 0 до 10 В (потенциометр выступает в роли делителя напряжения). Если используется не весь диапазон частот (от 0 до Fmax), то можно настроить частоту при минимальном и максимальном сигнале потенциометра. Пример настройки на управление частотой в диапазоне 20-45 Гц (см. рис. 5).
Рисунок 5 — График задания частоты
- Р310=20 (частота при минимальном сигнале);
- Р312=45 (частота при максимальном сигнале).
Также можно настроить на работу с прямым и обратным вращением двигателя. Пример настройки вращения от 25 Гц в одном направлении до 40 Гц в другом. При положении ручки потенциометра 0% двигатель вращается в обратном направлении на частоте 25 Гц. Пропорционально вращению ручки потенциометра двигатель замедляется, останавливается и начинает вращаться в прямом направлении. При положении ручки 100% достигается частота 40 Гц с вращением в прямом направлении (см. рис. 6).
Рисунок 6 — График задания частоты
- Р310=25 (частота при минимальном сигнале);
- Р311=1 (направление вращения при минимальном сигнале = обратное);
- Р312=40 (частота при максимальном сигнале);
- Р314=1 (при аналоговом сигнале реверс разрешен).
Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
Фиксированная частота используется в качестве задания выходной частоты, когда параметр P101=0. Во время работы ПЧ выходную частоту можно изменять кнопками «Вверх/Вниз» (расположенными на встроенной панели управления). После отключения питания значение частоты вернётся на значение в параметре P100, если P812=1. После отключения питания значение частоты заданной кнопками «Вверх/Вниз» сохраняется, если P812=0 (задано по умолчанию).
Задание частоты командами «Больше/Меньше»
Выходная частота задаётся сигналами «Вверх/Вниз», подключенными к программируемым дискретным входам (см. рис 7).
Рисунок 7 — Задание частоты через дискретные входы (команды «Больше/Меньше»)
Для конфигурации входов, необходимо изменить параметры:
- Р101=4 — источник задания выходной частоты = внешние кнопки «Вверх/Вниз»;
- P317=15 — вход S1 запрограммирован на сигнал «Вверх», то есть увеличение заданной частоты;
- P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты.
При замыкании контакта «Вверх» происходит увеличение заданной частоты, при замыкании контакта «Вниз» происходит уменьшение заданной частоты. Для сохранения заданной частоты после отключения питания необходимо установить соответствующий параметр P812=0 (установлен по умолчанию) (см. рис. 8).
Рисунок 8 — Задание частоты командами «Больше/Меньше»
Выносной пульт EMD-Mini RCP имеет абсолютно те же функции и возможности, что и панель управления на самом частотнике.
Пульт ELHART EMD-Mini RCP
При подключении пульта EMD-Mini RCP показания на встроенной панели и внешнем пульте дублируются (отображаются синхронно). При этом кнопки и потенциометр на встроенной панели не активны. Управление и настройки происходят только с внешнего пульта.
Пульт ELHART EMD-Mini P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты
Сводная таблица — сравнения способов управления преобразователем частоты
Способ управления | Преимущества | Недостатки |
---|---|---|
Со встроенной панели |
|
|
С пульта EMD-Mini RCP |
|
|
С внешних кнопок/переключателей, потенциометра |
|
|
5. Устранение типовых неполадок в работе частотного преобразователя
Если причины возникновения неполадки не известны, то рекомендуется произвести сброс параметров на заводские значения Р117=8 и провести настройку преобразователя частоты еще раз.
Устранение типовых неполадок в работе
Неполадка | Причина и способ устранения |
---|---|
Параметр не может быть изменен |
|
Электродвигатель не начинает вращение при подаче команды «ПУСК» |
|
Двигатель не работает в режиме вращения в обратном направлении |
|
Двигатель работает в режиме вращения в обратном направлении |
|
Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.
Источник
Особенности выносного пульта EMD‑MINI — RCP
- полноценное управление работой частотного преобразователя ELHART серии EMD‑MINI;
- питание от частотного преобразователя (не нужен внешний БП);
- потенциометр для задания величины регулируемого параметра;
- кабель для подключения к частотному преобразователю длиною 2 метра;
- накладной и врезной монтаж;
- степень защиты IP54 (по передней панели).
Описание органов управления и светодиодной индикации выносного пульта управления EMD‑MINI — RCP
Описание органов управления
Элемент управления | Название | Описание |
---|---|---|
|
Кнопка «МЕНЮ» / «СБРОС« | Кратковременное нажатие кнопки — вход в режим программирования; Нажатие более 2 секунд — сброс аварии. |
|
Кнопки «ВВЕРХ» / «ВНИЗ« | Выбор параметра и изменение его значения. |
|
Кнопка «ВВОД« | Смена текущего экрана отображения.
В меню: |
|
Потенциометр | Вращение – изменение задания частоты. |
|
Кнопка «ПУСК» / «СТОП« | Запуск и остановка вращения электродвигателя. |
Описание светодиодной индикации
Светодиодный индикатор | Описание |
---|---|
RUN | ПЧ в работе (подан сигнал «Пуск») |
FWD | ПЧ работает в режиме вращения в прямом направлении |
REV | ПЧ работает в режиме вращения в обратном направлении |
STOP | ПЧ остановлен (подан сигнал «Стоп») |
Технические характеристики пультов управления ELHART серии EMD‑MINI — RCP
Параметр | Значение |
---|---|
Напряжение питания | =5 В |
Рабочая температура | -10…+40 °C |
Относительная влажность | не более 95% (без образования конденсата) |
Степень защиты | IP54 (по передней панели) |
Тип монтажа | накладной или врезной |
Материал корпуса | пластмасса |
Габаритные размеры выносного пульта управления EMD‑MINI — RCP
Варианты монтажа выносного пульта управления EMD‑MINI — RCP
Оглавление
Коды ошибок
ос1; ос2; ос3; ос0; UC1, UC2, UC3; OU1 – для серии mini / oU1 – для серии mini PLUS; OU2 – для серии mini / oU2 – для серии mini PLUS; OU3 – для серии mini / oU3 – для серии mini PLUS; OU0; Lu0; Lu1, Lu2, Lu3; LU; oL0, oL1, oL2, oL3; оГ0, оГ1, оГ2, оГ3; ES; oH; EF; CO – обозначение у mini / Co – обозначение у mini PLUS;
20, 201, 202, 203 – обозначение у серии mini / 20 – обозначение у серии mini PLUS; nF0, nF1, nF2, nF3; Err; oH0, OH1, OH2, OH3; oH; LP; HP; LL; SLP;
Стандартные ошибки и проблемы
1. Параметр не может быть изменён.
2. Перегрев двигателя.
3. Двигатель не запускается при нажатии кнопки «ПУСК» на внешнем пульте управления.
4. Двигатель вибрирует или шумит.
5. Двигатель не работает в режиме реверса.
6. Двигатель работает в режиме реверса.
7. Запуск ПЧ нарушает работу других устройств.
Сброс ошибок
Ошибки имеют различные кодовые обозначения, — и в случае возникновения ошибки в процессе работы – их коды будут отображены на дисплее, как это проиллюстрировано изображением.
Коды ошибок
ос1
Описание: обозначение ошибки в параметрах РА10 – РА13, такая ошибка возникает в результате возникновения сверхтока во время ускорения.
Возможные причины:
- Недостаточное время ускорения.
- Неправильно задана зависимость для V/f-кривой.
- Короткое замыкание в обмотках двигателя или его обмоток на землю.
- Установлен слишком большой буст.
- Низкое напряжение в электрической сети.
- Пуск при вращающемся двигателе.
- Неправильная настройка ПЧ.
- Выход ПЧ из строя.
Решения:
- Увеличение времени ускорения.
- Задание соответствующей зависимости для V/f-кривой.
- Проверка сопротивления изоляции (при помощи мегаомметра, отсоединив при этом ПЧ).
- Уменьшение буста.
- Проверка напряжения электросети.
- Запуск с поиском частоты.
- Установка правильных параметров запуска.
- Замена ПЧ более мощным.
- Отправление в ремонт.
ос2
Описание: возникновение сверхтока при торможении.
Возможные причины:
- Малое время торможения.
- Недостаточная мощность ПЧ.
- Наличие источника электромагнитных помех.
Решения:
- Увеличьте время торможения.
- Увеличьте мощность ПЧ.
- Устраните источник помех.
ос3
Описание: такая ошибка возникает в результате появления сверхтока во время работы на постоянной скорости.
Возможные причины:
- Повреждена изоляция двигателя и его выводов.
- Большие изменения нагрузки, заклинивание ротора двигателя.
- Перепады напряжения в сети, низкое напряжение электросети.
- Недостаточная мощность ПЧ.
- Подключение к ПЧ мощных двигателей.
- Наличие источника электромагнитных помех.
Решения:
- Проверьте изоляцию.
- Проверьте нагрузку, устраните заклинивание, нанесите смазку при необходимости.
- Проверьте напряжение сети.
- Увеличьте мощность ПЧ или уменьшите нагрузку.
- Увеличьте мощность преобразователя.
- Устраните источник помех.
ос0 (актуально для серии mini)
Описание: возникновение сверхтока.
Возможная причина:
- Выход ПЧ из строя.
Решение:
- Замена ПЧ.
UC1, UC2, UC3 (актуально для серии mini)
Описание: внутреннее короткое замыкание или замыкание в преобразователе.
Возможная причина:
- Неисправность IGBT-модуля или цепей управления этим модулем.
Решения:
До истечения гарантийного срока:
- Обратиться в сервис гарантийного обслуживания.
После истечения гарантийного срока:
- Осмотреть преобразователь на предмет наличия внутри него посторонних предметов или жидкостей.
Проверьте цепи управления силовыми транзисторами. - Замените преобразователь.
OU1 – для серии mini / oU1 – для серии mini PLUS
Описание: перенапряжение при ускорении.
Возможные причины:
- Напряжение питания слишком велико.
- Неправильная конфигурация внешней цепи (например, использование запуска двигателя подачей напряжения сети).
- Выход ПЧ из строя.
Решения:
- Проверьте напряжение питания.
- Не используйте автоматический выключатель или пускатель для пуска электродвигателя, питающегося от ПЧ.
- Отправьте в ремонт.
OU2 – для серии mini / oU2 – для серии mini PLUS
Описание: перенапряжение во время работы.
Возможные причины:
- Напряжение питания слишком велико.
- Перегрузка из-за неправильной работы PID-регулятора.
- Несоответствующий тормозной резистор или тормозной модуль.
Решения:
- Проверьте напряжение питания.
Подстройте коэффициенты обратной связи. - Установите соответствующий тормозной резистор или тормозной модуль.
OU3 – для серии mini / oU3 – для серии mini PLUS
Описание: перенапряжение при торможении.
Возможные причины:
- Малое время торможения.
- Напряжение питания слишком велико.
- Большой момент инерции нагрузки.
- Неподходящий тормозной резистор.
- Неправильно выбран коэффициент использования тормозного модуля.
Решения:
- Увеличьте время торможения.
- Проверьте напряжение источника питания.
- Установите подходящий тормозной резистор и тормозной модуль.
- Подберите соответствующее тормозное сопротивление.
- Установите подходящее значение коэффициента использования тормозного модуля.
OU0 (актуально для серии mini)
Описание: перенапряжение в звене постоянного тока.
Возможные причины:
- Малое время торможения.
- Недостаточная мощность ПЧ.
- Наличие источника помех.
Решения:
- Увеличьте время торможения.
- Замените ПЧ на более мощный.
- Устраните источник помех.
Lu0 (актуально для серии mini)
Описание: пониженное напряжение до момента пуска преобразователя.
Возможные причины:
- Электросеть выдает пониженное напряжение.
- Отсутствие напряжение питания.
- Высвечивается при включении преобразователя (не является ошибкой).
Решения:
- Проверьте напряжение электросети.
- Проверьте автоматический выключатель и наличие напряжения.
Lu1, Lu2, Lu3 (актуально для серии mini)
Описание: пониженное напряжение при разгоне, работе, торможении соответственно.
Возможные причины:
- Электросеть выдает пониженное напряжение.
- Отсутствие напряжение на фазе.
- Большая нагрузка на электросеть.
Решения:
- Проверьте напряжение электросеть.
- Проверьте подсоединение внешних контактов.
- Используйте отдельный источник питания.
LU (актуально для серии mini PLUS)
Описание: пониженное напряжение.
Возможные причины:
- Источник питания выдает пониженное напряжение.
- Отсутствие напряжение питания.
- Высвечивается при включении преобразователя (не является ошибкой).
Решения:
- Проверьте напряжение источника питания.
- Проверьте автоматический выключатель и наличие напряжения.
oL0, oL1, oL2, oL3 (у серии mini PLUS используются коды oL1, oL2)
Описание: ПЧ и / или двигатель перегружен при остановке, разгоне, торможении, в рабочем режиме соответственно.
Возможные причины:
- Большая нагрузка.
- Малое время ускорения.
- Установлен большой буст (параметрPC08).
- Неправильно задана зависимость для V/F-кривой.
- Низкое напряжение в электросети.
- Запуск ПЧ при вращающемся двигателе.
- Заклинивание нагрузки.
- Номинальный ток двигателя задан не верно.
Решения:
- Уменьшите нагрузку или увеличьте мощность ПЧ.
- Увеличьте время ускорения.
- Уменьшите буст.
- Задайте подходящую зависимость для V/F- кривой.
Проверьте напряжение электросети или увеличьте мощность ПЧ.
Измените процедуру запуска ПЧ. - Проверьте нагрузку двигателя.
- Правильно задайте параметр PC10.
оГ0, оГ1, оГ2, оГ3 (актуально для серии mini)
Описание: превышен уровень допустимого тока при остановке, при разгоне, при торможении, в рабочем режиме соответственно.
Возможные причины:
- Большая нагрузка.
Малое время ускорения. - Установленный уровень допустимого тока слишком низок (см. параметр PE23).
- Неправильно задана зависимость для V/F-кривой.
Установлен большой буст. - Нарушена изоляция двигателя.
- Недостаточная мощность двигателя.
Решения:
- Снизьте нагрузку.
- Увеличьте время ускорения.
- Установите правильно параметр PE23.
- Задайте корректную зависимость для V/F- кривой.
- Уменьшите буст (PC08).
- Проверьте сопротивление изоляции двигателя, при отключенном от двигателя преобразователе.
- Установите более мощный двигатель
ES (актуально для серии mini
Описание: аварийное отключение.
Возможная причина:
- аварийное отключение ПЧ (на один из дискретных входов подан сигнал на остановку «Свободным выбегом»).
Решение:
- Запустите ПЧ согласно инструкции после устранения аварийной ситуации.
oH (актуально для серии mini PLUS)
Описание: перегрев силового модуля в ПЧ.
Возможные причины:
- Высокая температура окружающей среды.
- Засорен воздушный фильтр в шкафу.
- Не работает вентилятор.
- Поврежден температурный датчик.
- Поврежден силовой модуль ПЧ.
Решения:
- Снизить температуру окружающей среды.
- Обратитесь к поставщику.
EF (актуально для серии mini PLUS)
Описание: внешняя ошибка управления.
Возможная причина:
- Ошибка управляющего сигнала на программируемом входе преобразователя.
Решения:
- Проверить схему подключения внешнего сигнала.
- Проверить программирование соответствующих входов
CO – обозначение у mini / Co – обозначение у mini PLUS
Описание: нарушение передачи данных.
Возможные причины:
- Неправильное подсоединение проводов для передачи данных.
- Неправильно настроены параметры передачи данных.
- Неподходящий формат передачи данных.
Решения:
- Проверьте соответствующие соединения.
- Настройте параметры.
- Проверьте формат передачи данных, установите соответствие между Мастером сети и ПЧ.
20, 201, 202, 203 – обозначение у серии mini / 20 – обозначение у серии mini PLUS
Описание: отсутствует токовый сигнал обратной связи.
Возможная причина:
- Обрыв цепи обратной связи.
Решение:
- Устранить обрыв.
- Отремонтировать или заменить датчик обратной связи.
nF0, nF1, nF2, nF3 (актуально для серии mini)
Описание: отсутствует сигнал цифровой сети при остановке, при разгоне, при торможении, в рабочем режиме соответственно.
Возможные причины:
- Время между сообщениями, передаваемыми по цифровой сети, превысило пороговое значение, установленное в параметре PH04.
- Обрыв цепи цифровой сети.
Решения:
- Увеличить значение параметра PH04.
- Увеличить частоту посылки сообщений по цифровой сети.
- Установить значение параметра PH03 в значение 0.
- Устранить обрыв.
Err (актуально для серии mini)
Описание: параметр не может быть настроен.
Возможная причина:
- Параметр не существует или заблокирован.
Решение:
- Настройка параметра невозможна.
oH0, OH1, OH2, OH3 (актуально для серии mini)
Описание: ложное срабатывание защиты от перегрева при остановке, разгоне, торможении и рабочем режиме соответственно.
Возможные причины:
- Большие электромагнитные помехи.
- Неисправность платы управления.
Решение:
- Установить значение параметра Pi05=110.
- Заменить плату управления преобразователя.
oH (актуально для серии mini PLUS)
Описание: перегрев силового модуля в ПЧ.
Возможные причины:
- Высокая температура окружающей среды.
- Засорен воздушный фильтр в шкафу.
- Не работает вентилятор.
- Поврежден температурный датчик.
- Поврежден силовой модуль ПЧ.
Решения:
- Снизить температуру окружающей среды.
- Обратитесь к поставщику.
LP (актуально для серии mini PLUS)
Описание: Обратная связь PID ниже нижнего предела.
Возможные причины:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
Решения:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
HP (актуально для серии mini PLUS)
Описание: Обратная связь PID выше верхнего предела.
Возможные причины:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
Решения:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
LL (актуально для серии mini PLUS)
Описание: Ошибка «сухой ход».
Возможная причина:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
- Отсутствует вода в трубопроводе.
Решение:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
- Проверить трубопровод.
SLP (актуально для серии mini PLUS)
Описание: Спящий режим.
Возможная причина:
- Преобразователь частоты находится в спящем режиме в процессе работы PID регулятора.
Стандартные ошибки и проблемы
- Параметр не может быть изменён.
Возможные причины:
- Параметр заблокирован. Это означает, что в настройках ПЧ была активирована защита от изменения параметров. Для деактивации этой защиты необходимо присвоить параметру Pb18 (у устройств Innovert ISD mini и mini PLUS этот параметр отвечает за блокировку доступа к параметрам). значение «0». В случае, если при работе с mini PLUS невозможно присвоить параметру Pb01, который отвечает за способ установки заданной частоты, определенное значение (канал Х), то это означает, что такое значение уже выставлено по другому каналу и необходимо проверить его настройку, просмотрев значение параметра Pb20 (канал Y).
- Неправильная передача данных. Для решения этой проблемы необходимо перепроверить соединительные провода и подключить их заново к клеммам, отключив предварительно питание.
- Двигатель работает. У ПЧ существует защита от изменения значений параметров при работе двигателя, поэтому для изменения параметров необходимо предварительно остановить двигатель.
- Перегрев двигателя.
Возможные причины:
- Температура окружающей среды превышает допустимую. Решение: принятие мер для её понижения
- Нагрузка на двигатель превышает номинальный вращающий момент. Решение: уменьшить нагрузку, поставить редуктора или заменить двигатель на более мощный.
- Повреждение изоляции двигателя. Решение: замена двигателя.
- Большое расстояние между двигателем и ПЧ. Решение: уменьшение расстояния между ПЧ и двигателем, а также установка дросселя переменного тока.
- «Жёсткий режим» запуска двигателя. При включении двигателя по его обмоткам протекает большой ток. Решение: уменьшение величины максимального кратковременного тока, замена двигателя на более подходящий.
- Двигатель работает на низкой скорости. Решение: установка понижающего редуктора, чтобы обеспечить работу двигателя на более высокой скорости.
- Двигатель не запускается при нажатии кнопки «ПУСК» на внешнем пульте управления.
Возможные причины:
- Установлен неправильный режим работы. Решение: проверить параметр Pb02, ему должна быть присвоена «1».
- Нет задания частоты или заданная частота меньше, чем пусковая. Решение: повышение частоты.
- Двигатель не подключен. Решение: проверка подключения двигателя.
- Неправильно запрограммирована функция входной клеммы, внешний соединительный провод подключен к другой клемме. Решение: необходимо проверить параметры Pd15 – Pd22 (у ISD mini) или параметры Pd15-Pd18 (у ISD mini PLUS).
- ПЧ находится под действием защиты. Решение: отключить ПЧ, устранить причину, которая вызвала срабатывание защиты и только после её устранения запустить ПЧ.
- Двигатель неисправен. Решение: проверка двигателя.
- ПЧ неисправен: Решение: проверка работы ПЧ на заведомо исправном двигателе, контролируя его фазный ток.
- Двигатель вибрирует или шумит.
Возможные причины:
- Заклинивание ротора двигателя или отсутствие смазки. Решение: проверка нагрузки двигателя, проверка смазки.
- Резонансная вибрация двигателя. Решение: изменение частоты ШИМ, изменение времени ускорения/торможения, установка антивибрационных прокладок, установка зоны пропуска частоты, совпадающей с резонансной.
- Двигатель не работает в режиме реверса.
Возможные причины:
- Возможность вращения назад у двигателя – заблокирована.
Решение:
- Параметру Pb04 присвоить значение «1», предварительно уточнив безопасность реверсивного пуска.
- Двигатель работает в режиме реверса.
Возможные причины:
- Перепутан порядок подключения выходных клемм двигателя.
- Задан соответствующий управляющий сигнал.
Решение:
- изменение управляющего сигнала.
- изменение порядка подключения выходных клемм двигателя
- Запуск ПЧ нарушает работу других устройств.
Возможные причины:
- ПЧ выступает в качестве источника электромагнитных помех.
Решения:
- Уменьшение частоты ШИМ.
- Правильное заземление ПЧ и двигателя отдельными толстыми медными проводами.
- Соединение ПЧ и двигателя экранированным кабелем, экран которого должен надёжно соединяться с корпусом двигателя, а с другой стороны кабеля – с монтажной металлической панелью, на которой установлен ПЧ. Панель должна быть надежно заземлена.
- Установка выходного дросселя переменного тока на силовом выходе ПЧ.
- Установка специального высокочастотного фильтра на силовом входе ПЧ.
- Проложить проводку силового кабеля не ближе 10 см от проводки управляющего контура.
- В качестве управляющей линии использовать экранированные витые пары проводов.
- Установка ферритового кольца на входные и выходные провода.
Сброс ошибок
Сброс ошибок возможен путём нажатия на кнопку «СБРОС», однако перед этим необходимо удостовериться в том, что ошибка была устранена, а также – в том, что дальнейшая работа не повредит оборудованию.
Ошибки частотных преобразователей: примеры и коды ошибок
Частотные преобразователи — это электронные или электротехнические устройства, предназначенные для изменения и регулировки частоты электрического напряжения. Сфера их использования очень широка: насосные станции, системы тепло- и водоснабжения, линии производства, конвейеры, лифты, центрифуги, мельницы, металлургические агрегаты, буровое оборудование и т. д.
Использование частотных преобразователей на промышленных объектах дает следующие преимущества:
- Возможность отказаться от регулирующего оборудования: дросселей, вариаторов, редукторов и др. Это существенно упрощает работу механической системы, снижает расходы на эксплуатацию и повышает ее надежность.
- Плавный разгон управляемого двигателя, защищающий его от механических ударов и пусковых токов, что продлевает срок его службы.
- Частотные преобразователи в паре с асинхронными двигателями можно использовать в качестве альтернативы для приводов постоянного тока.
- Максимально рациональное регулирование скорости контролируемых двигателей и связанных с этим технологических процедур.
- Экономия электроэнергии, благодаря устранению ее неоправданных трат.
Но, несмотря на свою надежность и эффективность, частотные преобразователи, как и любые электронные приборы, подвержены износу. Инженерная компания 555 специализируется на ремонте промышленной электроники, и в частности — на устранении ошибок частотных преобразователей. Наши специалисты готовы отремонтировать вышедшее из строя оборудование в кратчайшие сроки.
Основные виды и причины неисправностей
Опознать неисправности частотников позволяют коды ошибок, высвечивающиеся на мониторе устройства. Каждая такая комбинация символов указывает на совершенно конкретную проблему, и это помогает специалистам выработать правильную стратегию ремонта. Для начала рассмотрим типовые виды ошибок частотных преобразователей:
- Over Current или OC. Данный сигнал на мониторе устройства свидетельствует о его перегрузке. Если подобная проблема возникла при тестовом запуске, необходимо проверить соответствие токов регулятора и электрической машины, а также исправность электроцепей управляемого двигателя. Следует учесть, что некоторые модели частотников высвечивают ошибку Over Current при торможении, работе и запуске электродвигателя.
- Over Heat или ОН. Это сообщение указывает на превышение номинально допустимой температуры частотного преобразователя. Проще говоря — на его перегрев. Устранить проблему можно посредством чистки внутреннего вентилятора или установки дополнительной вентиляционной системы в бокс, где располагается преобразователь. В качестве профилактики следует размещать частотник в месте, гарантирующем эффективный отвод тепла.
- Over Load или OL. Такая ошибка преобразователя может быть вызвана двумя обстоятельствами: превышением на валу момента силы или перегревом управляемого двигателя. Чтобы устранить проблему, необходимо выполнить корректную настройку тепловой защиты. Для этого во время программирования устройства нужно задать требуемую величину тока и время срабатывания защитной функции.
- Low Voltage или LV. Ошибка высвечивается при снижении напряжения питания или обрыве фаз (одной или двух). Существует два варианта решения этой проблемы: «насильственная» остановка двигателя или настройка его работы в однофазном режиме.
- Over Voltage или OV. Такую надпись можно увидеть на мониторе при замедлении вращения двигателя. Для устранения неисправности необходимо воспользоваться одним из трех способов: переводом устройства в режим генератора, активацией тормозного резистора или перенастройкой системы защиты от повышенного напряжения.
Среди других типовых неисправностей преобразователя следует выделить вращение двигателя в неправильном направлении, невозможность его запуска, проблемы с торможением и разгоном и т. д. Каждое повреждение имеет под собой конкретные причины. Например, если двигатель разгоняется очень медленно, скорее всего, дело в срабатывании функции токоограничения в момент разгона.
В число наиболее распространенных причин неисправностей входят:
- Заводской брак. Как правило, фабричные дефекты дают о себе знать в течение гарантийного срока. Поэтому для их устранения следует обращаться к поставщику или в брендовый сервисный центр.
- Ошибки при монтаже. Чаще всего причиной неисправностей становится некорректная сборка схемы привода или установка частотника в неподходящем месте.
- Нарушение норм эксплуатации. Регламент технического обслуживания изложен в инструкции, прилагаемой к устройству. Игнорирование регламента может привести к выходу из строя полупроводниковых элементов, перегреванию частотного регулятора и другим неисправностям.
- Несоответствие частотного преобразователя условиям его эксплуатации. Основные критерии выбора частотника — электрические характеристики двигателя, исполнение, набор функций и т. д. Несоответствие параметров условиям его эксплуатации приводит к некорректной работе устройства, выходу из строя и многочисленным поломкам.
Теперь поговорим об ошибках преобразователя частоты более подробно и предметно. В качестве примера рассмотрим привод известного китайского бренда INVT ELECTRIC CO, серии GDXXX. Предлагаем вашему вниманию таблицу, в которой представлены коды ошибок устройства, их расшифровка, вероятные причины неисправностей, а также способы их устранения.
Код ошибки | Расшифровка | Вероятные причины | Способы устранения |
OUt1, 2, 3 | Ошибка фазы. | Отсутствие заземления или контакта при подсоединении кабеля; слишком маленькое время разгона. | Увеличение времени разгона; замена модуля IGBT; устранение неисправностей внешнего оборудования; переподключение кабеля. |
OC1, 2, 3 | Токовая перегрузка при разгоне, торможении или постоянной скорости. | Чрезмерное время торможения или разгона; слишком высокое напряжение в сети; недостаточная мощность привода; потеря фазы или короткое замыкание «на землю»; воздействие внешнего фактора. |
Сокращение времени разгона; оптимизация питающего напряжения; приобретение привода с более высокой мощностью; проверка конфигурации выхода; устранение внешних помех. |
OV1, 2, 3 | Сверхнапряжение при разгоне, торможении или постоянной скорости. | Напряжение на входе не соответствует параметрам привода; чрезмерная энергия торможения. |
Проверка входного напряжения; оптимизация времени торможения/разгона. |
UV | Слишком низкое напряжение шины. | Пониженное напряжение питания. | Проверка и оптимизация входного напряжения. |
OL1 | Перегрузка электродвигателя. | Слишком низкое питающее напряжение; неверно заданные параметры тока; чрезмерная нагрузка на электродвигатель. |
Проверка входного напряжения; настройка правильных параметров тока в двигателе; оптимизация нагрузки. |
OL2 | Перегрузка преобразователя частоты. | Чрезмерно быстрый разгон; остановка двигателя; заниженное питающее напряжение; сверхнагрузка; длительная работа двигателя на низкой скорости. |
Увеличение времени разгона; снижение нагрузки на двигатель; проверка мощности двигателя и входного напряжения; приобретение привода с более высокой мощностью; замена двигателя. |
OL3 | Перегрузка по электричеству. | Сигнализация перегрузки в соответствии с заданными параметрами. | Проверка нагрузки и точки перегрузки. |
SPI | Потеря фаз входа. | Потеря колебания или фазы напряжения трех входных фаз. | Проверка и оптимизация входного напряжения и/или правильности монтажа. |
SPO | Потеря фаз выхода. | Асимметричная нагрузка. | Проверка выхода, двигателя и кабеля. |
OH1 | Перегревание выпрямителя. | Неисправность вентилятора или засорение вентиляционного канала; слишком высокая температура воздуха в помещении; чрезмерно затянутый запуск устройства. |
Замена вентилятора и проверка воздуховода; снижение температуры окружающей среды; проверка и восстановление воздухообмена; оптимизация мощности нагрузки; замена модуля IGBT; ремонт платы управления. |
EF | Неисправность внешних элементов. | Повреждение клеммы SIn и/или других внешних клемм. | Замена пришедших в негодность клемм. |
CE | Проблемы со связью. | Некорректная скорость в бодах; повреждение кабеля связи; неверно заданный адрес сообщения; серьезные помехи в кабеле. |
Оптимизация скорости в бодах; проверка кабеля связи; настройка правильного адреса сообщения; замена кабеля или оптимизация защиты от помех. |
ItE | Проблемы с обнаружением тока. | Некорректное подключение платы управления; отсутствие вспомогательного напряжения; выход из строя индикаторов тока. |
Проверка разъема, датчиков и платы управления. |
tE | Ошибка автоматической настройки. | Несоответствие мощностей двигателя и частотного преобразователя; неверно заданные параметры электродвигателя; серьезная разница между стандартными параметрами и параметрами автоматической настройки; выход времени на автонастройку. |
Установка параметров, указанных на шильдике двигателя; снижение нагрузки на двигатель; проверка параметров двигателя и его соединения; установка верхнего предела частоты на уровень «выше 2/3 номинальной частоты». |
bCE | Неисправность тормозного модуля. | Разрыв тормозных коммуникаций или некорректная работа тормозной цепи; недостаток производительности внешнего тормозного резистора. |
Проверка тормозного модуля и замена тормозных кабелей; принудительное повышение мощности тормозного резистора. |
ETH1, 2 | Короткое замыкание | Замыкание выхода преобразователя частоты «на землю»; неисправность в цепи определения тока. |
Проверка подключения двигателя и индикаторов тока; замена платы управления. |
dEu | Отклонение скоростного режима. | Избыточная нагрузка. | Оптимизация нагрузки и увеличение времени обнаружения; проверка и при необходимости корректировка параметров управления. |
STo | Несогласованность параметров. | Отсутствие параметров управления для синхронных электродвигателей; некорректно заданные параметры автоматической настройки; отсутствие подключения частотника к двигателю. |
Корректировка нагрузки на двигатель; установка корректных параметров управления; увеличение времени определения несогласованности. |
PCE | Обрыв связи с блоком управления. | Повреждение проводов, обеспечивающих подключение к блоку управления; помехи в проводах, связанные с внешним фактором; некорректное функционирование цепи в основной плате и/или в клавиатуре. |
Замена проводов блока управления; проверка внешней среды и устранение источника помех; выполнение комплексного сервисного обслуживания устройства. |
END | Сброс времени до заводских настроек. | Фактическое время функционирования преобразователя не соответствует внутреннему параметру продолжительности работы. | Корректировка настроек времени. |
DNE | Проблема с загрузкой параметров. | Повреждение проводов, подключаемых к блоку управления; помехи в проводах; ошибка в базе данных панели управления. |
Замена проводов блока управления; сервисное обслуживание частотного преобразователя; повторная загрузка данных в панель управления. |
Преимущества ремонта в инженерной компании 555
- Огромный опыт в ремонте частотных преобразователей разных моделей и марок.
- Команда профессиональных специалистов.
- Экономия до 70 % средств по сравнению с приобретением нового оборудования.
- Оперативное выполнение работ (максимальный срок ремонта — 15 дней).
- Бесплатная консультация и предварительный осмотр для определения ремонтопригодности привода.
- Доступные цены и оплата только по результату работы.
- Гарантия на отремонтированное оборудование — 12 месяцев.
Обращайтесь к нам из любой точки России, через сайт или по телефону. Промышленная электроника — это очень сложное и специфичное оборудование, которое следует доверять только профессионалам.
Мы ремонтируем:
Компания ООО «Барс-Гидравлик Групп» на протяжении нескольких лет успешно сотрудничает с ООО «Инженерная компания 555» в вопросах ремонта сложного промышленного оборудования. За время работы наш партнер зарекомендовал себя с самой лучшей стороны. Заказы выполняются в кротчайшие сроки при соблюдении высокого качества работ. Организация приема и выдачи заказов четкая. Гарантийные обязательства выполняются в полном объеме.
Выражаем благодарность Вашим специалистам за профессионализм и оперативное решение поставленных задач.
Особенно хочется отметить высокую клиентоориентированность персонала Вашей компании, готовность помочь в самых сложных ситуациях.
Мы высоко ценим сложившиеся между нашими компаниями открытые и доверительные партнерские отношения и искренне желаем «Инженерной компании «555» долгих лет успеха и процветания.
Читать весь
отзыв
ООО «Инженерная компания «555» оказывала нашей компании услуги по ремонту электродвигателей и проявила пунктуальность, аккуратность и ответственность в работе.
Результат выполненных работ говорит о качественном оборудовании и высококвалифицированных кадрах.
Сотрудники компании готовы выполнить новые для себя виды работ и оказать консультационные услуги, что характеризует их как профессионалов своего дела.
Рекомендуем ООО «ИК «555» как ответственного и надежного поставщика услуг.
Читать весь
отзыв
Сообщаем, что наша организация сотрудничает с ООО «Инженерная компания «555» с мая 2016 года по настоящее время.
За этот период мы обращались к услугам компании более 10 раз.
Благодаря серьезному и квалифицированному подходу сотрудников ООО «Инженерная компания «555» ремонтные работы произведены качественно с учетом сроков, и обеспечены гарантийным сопровождением.
Планируем в дальнейшем работать с ООО «Инженерная компания «555»
Читать весь
отзыв
Уважаемый Дмитрий Васильевич!
ОАО «Октябрьский электровагоноремонтный завод» успешно работает с ООО «Инженерная компания «555» несколько лет, очень довольны данным сотрудничеством. В работе компании наибольшую ценность для нас представляет готовность работать на условиях, удобных Заказчику, качественный ремонт оборудования в заявленные сроки и самое главное, финансовая защищенность Заказчика. В инженерной компании работают внимательные, доброжелательные сотрудники, готовые в любой момент решить проблему Заказчика. Мы рады, что выбрали ООО «Инженерная компания «555» в качестве партнера. Гарантируем дальнейшее сотрудничество!
Читать весь
отзыв
ЗАО «Охтинское» выражает глубокую признательность и истинную благодарность ООО Инженерной компании «555» за качественную работу компании по ремонту сложного оборудования промышленной электроники, оперативность и технически грамотное отношение к работе в течении всего периода сотрудничества.
Мы надеемся на дальнейшее успешное развитие деловых отношений в сфере ремонта промышленной электроники.
Читать весь
отзыв
Преимущества сотрудничества с нами
Оплата только за результат — работающий блок
Гарантия на работоспособность блока целиком 12 месяцев
Срок ремонта от 5 до 15 дней
Бесплатный предварительный осмотр на предмет ремонтопригодности
Не вносим конструктивных изменений
Ремонт на компонентном уровне
Наша лаборатория расположена в Санкт-Петербурге, но обратиться за помощью вы можете из любой точки России.
Закажите обратный звонок или наберите в рабочее время многоканальный телефон
– +7 (800) 555-89-01 (звонок по России бесплатный).
Расскажите о своей проблеме и получите инструкцию к дальнейшим действиям.
Ремонт преобразователей частоты и промышленной электроники в Казахстане
- 10 ноября, 2020
- 23:04
Коды ошибок
ос1
Описание: обозначение ошибки в параметрах РА10 – РА13, такая ошибка возникает в результате возникновения сверхтока во время ускорения.
Возможные причины:
- Недостаточное время ускорения.
- Неправильно задана зависимость для V/f-кривой.
- Короткое замыкание в обмотках двигателя или его обмоток на землю.
- Установлен слишком большой буст.
- Низкое напряжение в электрической сети.
- Пуск при вращающемся двигателе.
- Неправильная настройка ПЧ.
- Выход ПЧ из строя.
Решения:
- Увеличение времени ускорения.
- Задание соответствующей зависимости для V/f-кривой.
- Проверка сопротивления изоляции (при помощи мегаомметра, отсоединив при этом ПЧ).
- Уменьшение буста.
- Проверка напряжения электросети.
- Запуск с поиском частоты.
- Установка правильных параметров запуска.
- Замена ПЧ более мощным.
- Отправление в ремонт.
ос2
Описание: возникновение сверхтока при торможении.
Возможные причины:
- Малое время торможения.
- Недостаточная мощность ПЧ.
- Наличие источника электромагнитных помех.
Решения:
- Увеличьте время торможения.
- Увеличьте мощность ПЧ.
- Устраните источник помех.
ос3
Описание: такая ошибка возникает в результате появления сверхтока во время работы на постоянной скорости.
Возможные причины:
- Повреждена изоляция двигателя и его выводов.
- Большие изменения нагрузки, заклинивание ротора двигателя.
- Перепады напряжения в сети, низкое напряжение электросети.
- Недостаточная мощность ПЧ.
- Подключение к ПЧ мощных двигателей.
- Наличие источника электромагнитных помех.
Решения:
- Проверьте изоляцию.
- Проверьте нагрузку, устраните заклинивание, нанесите смазку при необходимости.
- Проверьте напряжение сети.
- Увеличьте мощность ПЧ или уменьшите нагрузку.
- Увеличьте мощность преобразователя.
- Устраните источник помех.
ос0 (актуально для серии mini)
Описание: возникновение сверхтока.
Возможная причина:
- Выход ПЧ из строя.
Решение:
- Замена ПЧ.
UC1, UC2, UC3 (актуально для серии mini)
Описание: внутреннее короткое замыкание или замыкание в преобразователе.
Возможная причина:
- Неисправность IGBT-модуля или цепей управления этим модулем.
Решения:
До истечения гарантийного срока:
- Обратиться в сервис гарантийного обслуживания.
После истечения гарантийного срока:
- Осмотреть преобразователь на предмет наличия внутри него посторонних предметов или жидкостей.
Проверьте цепи управления силовыми транзисторами. - Замените преобразователь.
OU1 – для серии mini / oU1 – для серии mini PLUS
Описание: перенапряжение при ускорении.
Возможные причины:
- Напряжение питания слишком велико.
- Неправильная конфигурация внешней цепи (например, использование запуска двигателя подачей напряжения сети).
- Выход ПЧ из строя.
Решения:
- Проверьте напряжение питания.
- Не используйте автоматический выключатель или пускатель для пуска электродвигателя, питающегося от ПЧ.
- Отправьте в ремонт.
OU2 – для серии mini / oU2 – для серии mini PLUS
Описание: перенапряжение во время работы.
Возможные причины:
- Напряжение питания слишком велико.
- Перегрузка из-за неправильной работы PID-регулятора.
- Несоответствующий тормозной резистор или тормозной модуль.
Решения:
- Проверьте напряжение питания.
Подстройте коэффициенты обратной связи. - Установите соответствующий тормозной резистор или тормозной модуль.
OU3 – для серии mini / oU3 – для серии mini PLUS
Описание: перенапряжение при торможении.
Возможные причины:
- Малое время торможения.
- Напряжение питания слишком велико.
- Большой момент инерции нагрузки.
- Неподходящий тормозной резистор.
- Неправильно выбран коэффициент использования тормозного модуля.
Решения:
- Увеличьте время торможения.
- Проверьте напряжение источника питания.
- Установите подходящий тормозной резистор и тормозной модуль.
- Подберите соответствующее тормозное сопротивление.
- Установите подходящее значение коэффициента использования тормозного модуля.
OU0 (актуально для серии mini)
Описание: перенапряжение в звене постоянного тока.
Возможные причины:
- Малое время торможения.
- Недостаточная мощность ПЧ.
- Наличие источника помех.
Решения:
- Увеличьте время торможения.
- Замените ПЧ на более мощный.
- Устраните источник помех.
Lu0 (актуально для серии mini)
Описание: пониженное напряжение до момента пуска преобразователя.
Возможные причины:
- Электросеть выдает пониженное напряжение.
- Отсутствие напряжение питания.
- Высвечивается при включении преобразователя (не является ошибкой).
Решения:
- Проверьте напряжение электросети.
- Проверьте автоматический выключатель и наличие напряжения.
Lu1, Lu2, Lu3 (актуально для серии mini)
Описание: пониженное напряжение при разгоне, работе, торможении соответственно.
Возможные причины:
- Электросеть выдает пониженное напряжение.
- Отсутствие напряжение на фазе.
- Большая нагрузка на электросеть.
Решения:
- Проверьте напряжение электросеть.
- Проверьте подсоединение внешних контактов.
- Используйте отдельный источник питания.
LU (актуально для серии mini PLUS)
Описание: пониженное напряжение.
Возможные причины:
- Источник питания выдает пониженное напряжение.
- Отсутствие напряжение питания.
- Высвечивается при включении преобразователя (не является ошибкой).
Решения:
- Проверьте напряжение источника питания.
- Проверьте автоматический выключатель и наличие напряжения.
oL0, oL1, oL2, oL3 (у серии mini PLUS используются коды oL1, oL2)
Описание: ПЧ и / или двигатель перегружен при остановке, разгоне, торможении, в рабочем режиме соответственно.
Возможные причины:
- Большая нагрузка.
- Малое время ускорения.
- Установлен большой буст (параметрPC08).
- Неправильно задана зависимость для V/F-кривой.
- Низкое напряжение в электросети.
- Запуск ПЧ при вращающемся двигателе.
- Заклинивание нагрузки.
- Номинальный ток двигателя задан не верно.
Решения:
- Уменьшите нагрузку или увеличьте мощность ПЧ.
- Увеличьте время ускорения.
- Уменьшите буст.
- Задайте подходящую зависимость для V/F- кривой.
Проверьте напряжение электросети или увеличьте мощность ПЧ.
Измените процедуру запуска ПЧ. - Проверьте нагрузку двигателя.
- Правильно задайте параметр PC10.
оГ0, оГ1, оГ2, оГ3 (актуально для серии mini)
Описание: превышен уровень допустимого тока при остановке, при разгоне, при торможении, в рабочем режиме соответственно.
Возможные причины:
- Большая нагрузка.
Малое время ускорения. - Установленный уровень допустимого тока слишком низок (см. параметр PE23).
- Неправильно задана зависимость для V/F-кривой.
Установлен большой буст. - Нарушена изоляция двигателя.
- Недостаточная мощность двигателя.
Решения:
- Снизьте нагрузку.
- Увеличьте время ускорения.
- Установите правильно параметр PE23.
- Задайте корректную зависимость для V/F- кривой.
- Уменьшите буст (PC08).
- Проверьте сопротивление изоляции двигателя, при отключенном от двигателя преобразователе.
- Установите более мощный двигатель
ES (актуально для серии mini
Описание: аварийное отключение.
Возможная причина:
- аварийное отключение ПЧ (на один из дискретных входов подан сигнал на остановку «Свободным выбегом»).
Решение:
- Запустите ПЧ согласно инструкции после устранения аварийной ситуации.
oH (актуально для серии mini PLUS)
Описание: перегрев силового модуля в ПЧ.
Возможные причины:
- Высокая температура окружающей среды.
- Засорен воздушный фильтр в шкафу.
- Не работает вентилятор.
- Поврежден температурный датчик.
- Поврежден силовой модуль ПЧ.
Решения:
- Снизить температуру окружающей среды.
- Обратитесь к поставщику.
EF (актуально для серии mini PLUS)
Описание: внешняя ошибка управления.
Возможная причина:
- Ошибка управляющего сигнала на программируемом входе преобразователя.
Решения:
- Проверить схему подключения внешнего сигнала.
- Проверить программирование соответствующих входов
CO – обозначение у mini / Co – обозначение у mini PLUS
Описание: нарушение передачи данных.
Возможные причины:
- Неправильное подсоединение проводов для передачи данных.
- Неправильно настроены параметры передачи данных.
- Неподходящий формат передачи данных.
Решения:
- Проверьте соответствующие соединения.
- Настройте параметры.
- Проверьте формат передачи данных, установите соответствие между Мастером сети и ПЧ.
20, 201, 202, 203 – обозначение у серии mini / 20 – обозначение у серии mini PLUS
Описание: отсутствует токовый сигнал обратной связи.
Возможная причина:
- Обрыв цепи обратной связи.
Решение:
- Устранить обрыв.
- Отремонтировать или заменить датчик обратной связи.
nF0, nF1, nF2, nF3 (актуально для серии mini)
Описание: отсутствует сигнал цифровой сети при остановке, при разгоне, при торможении, в рабочем режиме соответственно.
Возможные причины:
- Время между сообщениями, передаваемыми по цифровой сети, превысило пороговое значение, установленное в параметре PH04.
- Обрыв цепи цифровой сети.
Решения:
- Увеличить значение параметра PH04.
- Увеличить частоту посылки сообщений по цифровой сети.
- Установить значение параметра PH03 в значение 0.
- Устранить обрыв.
Err (актуально для серии mini)
Описание: параметр не может быть настроен.
Возможная причина:
- Параметр не существует или заблокирован.
Решение:
- Настройка параметра невозможна.
oH0, OH1, OH2, OH3 (актуально для серии mini)
Описание: ложное срабатывание защиты от перегрева при остановке, разгоне, торможении и рабочем режиме соответственно.
Возможные причины:
- Большие электромагнитные помехи.
- Неисправность платы управления.
Решение:
- Установить значение параметра Pi05=110.
- Заменить плату управления преобразователя.
oH (актуально для серии mini PLUS)
Описание: перегрев силового модуля в ПЧ.
Возможные причины:
- Высокая температура окружающей среды.
- Засорен воздушный фильтр в шкафу.
- Не работает вентилятор.
- Поврежден температурный датчик.
- Поврежден силовой модуль ПЧ.
Решения:
- Снизить температуру окружающей среды.
- Обратитесь к поставщику.
LP (актуально для серии mini PLUS)
Описание: Обратная связь PID ниже нижнего предела.
Возможные причины:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
Решения:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
HP (актуально для серии mini PLUS)
Описание: Обратная связь PID выше верхнего предела.
Возможные причины:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
Решения:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
LL (актуально для серии mini PLUS)
Описание: Ошибка «сухой ход».
Возможная причина:
- Ошибка датчика обратной связи.
- Ошибка программирования PID.
- Отсутствует вода в трубопроводе.
Решение:
- Проверить провода от датчика на «обрыв» и сам датчик.
- Скорректировать параметры PID.
- Проверить трубопровод.
SLP (актуально для серии mini PLUS)
Описание: Спящий режим.
Возможная причина:
- Преобразователь частоты находится в спящем режиме в процессе работы PID регулятора.
Стандартные ошибки и проблемы
- Параметр не может быть изменён.
Возможные причины:
- Параметр заблокирован. Это означает, что в настройках ПЧ была активирована защита от изменения параметров. Для деактивации этой защиты необходимо присвоить параметру Pb18 (у устройств Innovert ISD mini и mini PLUS этот параметр отвечает за блокировку доступа к параметрам). значение «0». В случае, если при работе с mini PLUS невозможно присвоить параметру Pb01, который отвечает за способ установки заданной частоты, определенное значение (канал Х), то это означает, что такое значение уже выставлено по другому каналу и необходимо проверить его настройку, просмотрев значение параметра Pb20 (канал Y).
- Неправильная передача данных. Для решения этой проблемы необходимо перепроверить соединительные провода и подключить их заново к клеммам, отключив предварительно питание.
- Двигатель работает. У ПЧ существует защита от изменения значений параметров при работе двигателя, поэтому для изменения параметров необходимо предварительно остановить двигатель.
- Перегрев двигателя.
Возможные причины:
- Температура окружающей среды превышает допустимую. Решение: принятие мер для её понижения
- Нагрузка на двигатель превышает номинальный вращающий момент. Решение: уменьшить нагрузку, поставить редуктора или заменить двигатель на более мощный.
- Повреждение изоляции двигателя. Решение: замена двигателя.
- Большое расстояние между двигателем и ПЧ. Решение: уменьшение расстояния между ПЧ и двигателем, а также установка дросселя переменного тока.
- «Жёсткий режим» запуска двигателя. При включении двигателя по его обмоткам протекает большой ток. Решение: уменьшение величины максимального кратковременного тока, замена двигателя на более подходящий.
- Двигатель работает на низкой скорости. Решение: установка понижающего редуктора, чтобы обеспечить работу двигателя на более высокой скорости.
- Двигатель не запускается при нажатии кнопки «ПУСК» на внешнем пульте управления.
Возможные причины:
- Установлен неправильный режим работы. Решение: проверить параметр Pb02, ему должна быть присвоена «1».
- Нет задания частоты или заданная частота меньше, чем пусковая. Решение: повышение частоты.
- Двигатель не подключен. Решение: проверка подключения двигателя.
- Неправильно запрограммирована функция входной клеммы, внешний соединительный провод подключен к другой клемме. Решение: необходимо проверить параметры Pd15 – Pd22 (у ISD mini) или параметры Pd15-Pd18 (у ISD mini PLUS).
- ПЧ находится под действием защиты. Решение: отключить ПЧ, устранить причину, которая вызвала срабатывание защиты и только после её устранения запустить ПЧ.
- Двигатель неисправен. Решение: проверка двигателя.
- ПЧ неисправен: Решение: проверка работы ПЧ на заведомо исправном двигателе, контролируя его фазный ток.
- Двигатель вибрирует или шумит.
Возможные причины:
- Заклинивание ротора двигателя или отсутствие смазки. Решение: проверка нагрузки двигателя, проверка смазки.
- Резонансная вибрация двигателя. Решение: изменение частоты ШИМ, изменение времени ускорения/торможения, установка антивибрационных прокладок, установка зоны пропуска частоты, совпадающей с резонансной.
- Двигатель не работает в режиме реверса.
Возможные причины:
- Возможность вращения назад у двигателя – заблокирована.
Решение:
- Параметру Pb04 присвоить значение «1», предварительно уточнив безопасность реверсивного пуска.
- Двигатель работает в режиме реверса.
Возможные причины:
- Перепутан порядок подключения выходных клемм двигателя.
- Задан соответствующий управляющий сигнал.
Решение:
- изменение управляющего сигнала.
- изменение порядка подключения выходных клемм двигателя
- Запуск ПЧ нарушает работу других устройств.
Возможные причины:
- ПЧ выступает в качестве источника электромагнитных помех.
Решения:
- Уменьшение частоты ШИМ.
- Правильное заземление ПЧ и двигателя отдельными толстыми медными проводами.
- Соединение ПЧ и двигателя экранированным кабелем, экран которого должен надёжно соединяться с корпусом двигателя, а с другой стороны кабеля – с монтажной металлической панелью, на которой установлен ПЧ. Панель должна быть надежно заземлена.
- Установка выходного дросселя переменного тока на силовом выходе ПЧ.
- Установка специального высокочастотного фильтра на силовом входе ПЧ.
- Проложить проводку силового кабеля не ближе 10 см от проводки управляющего контура.
- В качестве управляющей линии использовать экранированные витые пары проводов.
- Установка ферритового кольца на входные и выходные провода.
Сброс ошибок
Сброс ошибок возможен путём нажатия на кнопку «СБРОС», однако перед этим необходимо удостовериться в том, что ошибка была устранена, а также – в том, что дальнейшая работа не повредит оборудованию.
Ошибки частотных преобразователей: примеры и коды ошибок
Частотные преобразователи — это электронные или электротехнические устройства, предназначенные для изменения и регулировки частоты электрического напряжения. Сфера их использования очень широка: насосные станции, системы тепло- и водоснабжения, линии производства, конвейеры, лифты, центрифуги, мельницы, металлургические агрегаты, буровое оборудование и т. д.
Использование частотных преобразователей на промышленных объектах дает следующие преимущества:
- Возможность отказаться от регулирующего оборудования: дросселей, вариаторов, редукторов и др. Это существенно упрощает работу механической системы, снижает расходы на эксплуатацию и повышает ее надежность.
- Плавный разгон управляемого двигателя, защищающий его от механических ударов и пусковых токов, что продлевает срок его службы.
- Частотные преобразователи в паре с асинхронными двигателями можно использовать в качестве альтернативы для приводов постоянного тока.
- Максимально рациональное регулирование скорости контролируемых двигателей и связанных с этим технологических процедур.
- Экономия электроэнергии, благодаря устранению ее неоправданных трат.
Но, несмотря на свою надежность и эффективность, частотные преобразователи, как и любые электронные приборы, подвержены износу. Инженерная компания 555 специализируется на ремонте промышленной электроники, и в частности — на устранении ошибок частотных преобразователей. Наши специалисты готовы отремонтировать вышедшее из строя оборудование в кратчайшие сроки.
Основные виды и причины неисправностей
Опознать неисправности частотников позволяют коды ошибок, высвечивающиеся на мониторе устройства. Каждая такая комбинация символов указывает на совершенно конкретную проблему, и это помогает специалистам выработать правильную стратегию ремонта. Для начала рассмотрим типовые виды ошибок частотных преобразователей:
- Over Current или OC. Данный сигнал на мониторе устройства свидетельствует о его перегрузке. Если подобная проблема возникла при тестовом запуске, необходимо проверить соответствие токов регулятора и электрической машины, а также исправность электроцепей управляемого двигателя. Следует учесть, что некоторые модели частотников высвечивают ошибку Over Current при торможении, работе и запуске электродвигателя.
- Over Heat или ОН. Это сообщение указывает на превышение номинально допустимой температуры частотного преобразователя. Проще говоря — на его перегрев. Устранить проблему можно посредством чистки внутреннего вентилятора или установки дополнительной вентиляционной системы в бокс, где располагается преобразователь. В качестве профилактики следует размещать частотник в месте, гарантирующем эффективный отвод тепла.
- Over Load или OL. Такая ошибка преобразователя может быть вызвана двумя обстоятельствами: превышением на валу момента силы или перегревом управляемого двигателя. Чтобы устранить проблему, необходимо выполнить корректную настройку тепловой защиты. Для этого во время программирования устройства нужно задать требуемую величину тока и время срабатывания защитной функции.
- Low Voltage или LV. Ошибка высвечивается при снижении напряжения питания или обрыве фаз (одной или двух). Существует два варианта решения этой проблемы: «насильственная» остановка двигателя или настройка его работы в однофазном режиме.
- Over Voltage или OV. Такую надпись можно увидеть на мониторе при замедлении вращения двигателя. Для устранения неисправности необходимо воспользоваться одним из трех способов: переводом устройства в режим генератора, активацией тормозного резистора или перенастройкой системы защиты от повышенного напряжения.
Среди других типовых неисправностей преобразователя следует выделить вращение двигателя в неправильном направлении, невозможность его запуска, проблемы с торможением и разгоном и т. д. Каждое повреждение имеет под собой конкретные причины. Например, если двигатель разгоняется очень медленно, скорее всего, дело в срабатывании функции токоограничения в момент разгона.
В число наиболее распространенных причин неисправностей входят:
- Заводской брак. Как правило, фабричные дефекты дают о себе знать в течение гарантийного срока. Поэтому для их устранения следует обращаться к поставщику или в брендовый сервисный центр.
- Ошибки при монтаже. Чаще всего причиной неисправностей становится некорректная сборка схемы привода или установка частотника в неподходящем месте.
- Нарушение норм эксплуатации. Регламент технического обслуживания изложен в инструкции, прилагаемой к устройству. Игнорирование регламента может привести к выходу из строя полупроводниковых элементов, перегреванию частотного регулятора и другим неисправностям.
- Несоответствие частотного преобразователя условиям его эксплуатации. Основные критерии выбора частотника — электрические характеристики двигателя, исполнение, набор функций и т. д. Несоответствие параметров условиям его эксплуатации приводит к некорректной работе устройства, выходу из строя и многочисленным поломкам.
Теперь поговорим об ошибках преобразователя частоты более подробно и предметно. В качестве примера рассмотрим привод известного китайского бренда INVT ELECTRIC CO, серии GDXXX. Предлагаем вашему вниманию таблицу, в которой представлены коды ошибок устройства, их расшифровка, вероятные причины неисправностей, а также способы их устранения.
Код ошибки | Расшифровка | Вероятные причины | Способы устранения |
OUt1, 2, 3 | Ошибка фазы. | Отсутствие заземления или контакта при подсоединении кабеля; слишком маленькое время разгона. | Увеличение времени разгона; замена модуля IGBT; устранение неисправностей внешнего оборудования; переподключение кабеля. |
OC1, 2, 3 | Токовая перегрузка при разгоне, торможении или постоянной скорости. | Чрезмерное время торможения или разгона; слишком высокое напряжение в сети; недостаточная мощность привода; потеря фазы или короткое замыкание «на землю»; воздействие внешнего фактора. |
Сокращение времени разгона; оптимизация питающего напряжения; приобретение привода с более высокой мощностью; проверка конфигурации выхода; устранение внешних помех. |
OV1, 2, 3 | Сверхнапряжение при разгоне, торможении или постоянной скорости. | Напряжение на входе не соответствует параметрам привода; чрезмерная энергия торможения. |
Проверка входного напряжения; оптимизация времени торможения/разгона. |
UV | Слишком низкое напряжение шины. | Пониженное напряжение питания. | Проверка и оптимизация входного напряжения. |
OL1 | Перегрузка электродвигателя. | Слишком низкое питающее напряжение; неверно заданные параметры тока; чрезмерная нагрузка на электродвигатель. |
Проверка входного напряжения; настройка правильных параметров тока в двигателе; оптимизация нагрузки. |
OL2 | Перегрузка преобразователя частоты. | Чрезмерно быстрый разгон; остановка двигателя; заниженное питающее напряжение; сверхнагрузка; длительная работа двигателя на низкой скорости. |
Увеличение времени разгона; снижение нагрузки на двигатель; проверка мощности двигателя и входного напряжения; приобретение привода с более высокой мощностью; замена двигателя. |
OL3 | Перегрузка по электричеству. | Сигнализация перегрузки в соответствии с заданными параметрами. | Проверка нагрузки и точки перегрузки. |
SPI | Потеря фаз входа. | Потеря колебания или фазы напряжения трех входных фаз. | Проверка и оптимизация входного напряжения и/или правильности монтажа. |
SPO | Потеря фаз выхода. | Асимметричная нагрузка. | Проверка выхода, двигателя и кабеля. |
OH1 | Перегревание выпрямителя. | Неисправность вентилятора или засорение вентиляционного канала; слишком высокая температура воздуха в помещении; чрезмерно затянутый запуск устройства. |
Замена вентилятора и проверка воздуховода; снижение температуры окружающей среды; проверка и восстановление воздухообмена; оптимизация мощности нагрузки; замена модуля IGBT; ремонт платы управления. |
EF | Неисправность внешних элементов. | Повреждение клеммы SIn и/или других внешних клемм. | Замена пришедших в негодность клемм. |
CE | Проблемы со связью. | Некорректная скорость в бодах; повреждение кабеля связи; неверно заданный адрес сообщения; серьезные помехи в кабеле. |
Оптимизация скорости в бодах; проверка кабеля связи; настройка правильного адреса сообщения; замена кабеля или оптимизация защиты от помех. |
ItE | Проблемы с обнаружением тока. | Некорректное подключение платы управления; отсутствие вспомогательного напряжения; выход из строя индикаторов тока. |
Проверка разъема, датчиков и платы управления. |
tE | Ошибка автоматической настройки. | Несоответствие мощностей двигателя и частотного преобразователя; неверно заданные параметры электродвигателя; серьезная разница между стандартными параметрами и параметрами автоматической настройки; выход времени на автонастройку. |
Установка параметров, указанных на шильдике двигателя; снижение нагрузки на двигатель; проверка параметров двигателя и его соединения; установка верхнего предела частоты на уровень «выше 2/3 номинальной частоты». |
bCE | Неисправность тормозного модуля. | Разрыв тормозных коммуникаций или некорректная работа тормозной цепи; недостаток производительности внешнего тормозного резистора. |
Проверка тормозного модуля и замена тормозных кабелей; принудительное повышение мощности тормозного резистора. |
ETH1, 2 | Короткое замыкание | Замыкание выхода преобразователя частоты «на землю»; неисправность в цепи определения тока. |
Проверка подключения двигателя и индикаторов тока; замена платы управления. |
dEu | Отклонение скоростного режима. | Избыточная нагрузка. | Оптимизация нагрузки и увеличение времени обнаружения; проверка и при необходимости корректировка параметров управления. |
STo | Несогласованность параметров. | Отсутствие параметров управления для синхронных электродвигателей; некорректно заданные параметры автоматической настройки; отсутствие подключения частотника к двигателю. |
Корректировка нагрузки на двигатель; установка корректных параметров управления; увеличение времени определения несогласованности. |
PCE | Обрыв связи с блоком управления. | Повреждение проводов, обеспечивающих подключение к блоку управления; помехи в проводах, связанные с внешним фактором; некорректное функционирование цепи в основной плате и/или в клавиатуре. |
Замена проводов блока управления; проверка внешней среды и устранение источника помех; выполнение комплексного сервисного обслуживания устройства. |
END | Сброс времени до заводских настроек. | Фактическое время функционирования преобразователя не соответствует внутреннему параметру продолжительности работы. | Корректировка настроек времени. |
DNE | Проблема с загрузкой параметров. | Повреждение проводов, подключаемых к блоку управления; помехи в проводах; ошибка в базе данных панели управления. |
Замена проводов блока управления; сервисное обслуживание частотного преобразователя; повторная загрузка данных в панель управления. |
Преимущества ремонта в инженерной компании 555
- Огромный опыт в ремонте частотных преобразователей разных моделей и марок.
- Команда профессиональных специалистов.
- Экономия до 70 % средств по сравнению с приобретением нового оборудования.
- Оперативное выполнение работ (максимальный срок ремонта — 15 дней).
- Бесплатная консультация и предварительный осмотр для определения ремонтопригодности привода.
- Доступные цены и оплата только по результату работы.
- Гарантия на отремонтированное оборудование — 12 месяцев.
Обращайтесь к нам из любой точки России, через сайт или по телефону. Промышленная электроника — это очень сложное и специфичное оборудование, которое следует доверять только профессионалам.
Мы ремонтируем:
Компания ООО «Барс-Гидравлик Групп» на протяжении нескольких лет успешно сотрудничает с ООО «Инженерная компания 555» в вопросах ремонта сложного промышленного оборудования. За время работы наш партнер зарекомендовал себя с самой лучшей стороны. Заказы выполняются в кротчайшие сроки при соблюдении высокого качества работ. Организация приема и выдачи заказов четкая. Гарантийные обязательства выполняются в полном объеме.
Выражаем благодарность Вашим специалистам за профессионализм и оперативное решение поставленных задач.
Особенно хочется отметить высокую клиентоориентированность персонала Вашей компании, готовность помочь в самых сложных ситуациях.
Мы высоко ценим сложившиеся между нашими компаниями открытые и доверительные партнерские отношения и искренне желаем «Инженерной компании «555» долгих лет успеха и процветания.
Читать весь
отзыв
ООО «Инженерная компания «555» оказывала нашей компании услуги по ремонту электродвигателей и проявила пунктуальность, аккуратность и ответственность в работе.
Результат выполненных работ говорит о качественном оборудовании и высококвалифицированных кадрах.
Сотрудники компании готовы выполнить новые для себя виды работ и оказать консультационные услуги, что характеризует их как профессионалов своего дела.
Рекомендуем ООО «ИК «555» как ответственного и надежного поставщика услуг.
Читать весь
отзыв
Сообщаем, что наша организация сотрудничает с ООО «Инженерная компания «555» с мая 2016 года по настоящее время.
За этот период мы обращались к услугам компании более 10 раз.
Благодаря серьезному и квалифицированному подходу сотрудников ООО «Инженерная компания «555» ремонтные работы произведены качественно с учетом сроков, и обеспечены гарантийным сопровождением.
Планируем в дальнейшем работать с ООО «Инженерная компания «555»
Читать весь
отзыв
Уважаемый Дмитрий Васильевич!
ОАО «Октябрьский электровагоноремонтный завод» успешно работает с ООО «Инженерная компания «555» несколько лет, очень довольны данным сотрудничеством. В работе компании наибольшую ценность для нас представляет готовность работать на условиях, удобных Заказчику, качественный ремонт оборудования в заявленные сроки и самое главное, финансовая защищенность Заказчика. В инженерной компании работают внимательные, доброжелательные сотрудники, готовые в любой момент решить проблему Заказчика. Мы рады, что выбрали ООО «Инженерная компания «555» в качестве партнера. Гарантируем дальнейшее сотрудничество!
Читать весь
отзыв
ЗАО «Охтинское» выражает глубокую признательность и истинную благодарность ООО Инженерной компании «555» за качественную работу компании по ремонту сложного оборудования промышленной электроники, оперативность и технически грамотное отношение к работе в течении всего периода сотрудничества.
Мы надеемся на дальнейшее успешное развитие деловых отношений в сфере ремонта промышленной электроники.
Читать весь
отзыв
Преимущества сотрудничества с нами
Оплата только за результат — работающий блок
Гарантия на работоспособность блока целиком 12 месяцев
Срок ремонта от 5 до 15 дней
Бесплатный предварительный осмотр на предмет ремонтопригодности
Не вносим конструктивных изменений
Ремонт на компонентном уровне
Наша лаборатория расположена в Санкт-Петербурге, но обратиться за помощью вы можете из любой точки России.
Закажите обратный звонок или наберите в рабочее время многоканальный телефон
– +7 (800) 555-89-01 (звонок по России бесплатный).
Расскажите о своей проблеме и получите инструкцию к дальнейшим действиям.
Ремонт преобразователей частоты и промышленной электроники в Казахстане
- 10 ноября, 2020
- 23:04
Коды ошибок: преобразователь частоты INVT серии GD200A
Все коды ошибок частотника INVT
В данной статье предены таблицы с наиболее частыми кодами ошибок преобразователя частоты INVT.
Стоить понимать, что данные коды, обычно прописанные в алгоритме программы управления частотником, и порою имеют косвенное указание на причину проблем и ошибок ПЧ.
Для выяснения причины и локализации ошибок, необходимо проводить полную диагностику преобразователя в професиональных сервисных центрах квалифицированным специалистом.
Отзывы:
НАШИ РАБОТЫ И ПОЛЕЗНОЕ ДЛЯ ВАС
Ремонт плазмореза СВАРОГ CUT-160
Ремонт плазмореза СВАРОГ CUT-160 Описание Источник питания плазменной резки СВАРОГ CUT160 пришел на ремонт с неисправностью — «Вкючается, но не зажигает дугу. Не режет». Данный
ПОДРОБНЕЕ »
Ремонт панели оператора (HMI)
Ремонт панели оператора Описание Панели оператора используемые на производстве цементного завода, пришли с неисправностью — «Не горит монитор. Дисплей не реагирует на нажатие сенсорного экрана».
ПОДРОБНЕЕ »
Ремонт плазмареза LGK-200HD
Ремонт плазмареза LGK-200HD Описание Источник питания плазмафрезерного оборудования LGK-200HD пришел на ремонт с неисправностью — «Работат от 3 мин до 10 мин и уходит в
ПОДРОБНЕЕ »
Ремонт и гарантия
На выполненную работу дается гарантия 12 месяцев. Техника выдается после полного тестирования.
Бесплатная диагностика
Проверка и отчет заказчику о состоянии сварочного аппарата – в течение трех-четырех часов.
Расчет
Принимаем оплату безналичным, наличным способом, предоставляем бухгалтерские документы. Юридические и физические лица.
Доставляем
Доставляем оборудование по указанному адресу, либо вы можете забрать самостоятельно из любого сервисного центра.
Мы выполняем ремонт аппаратов плазменной резки с высоким уровнем качества!
Наш сервисный центр maxtron специализируется на профессиональном ремонте плазморезов (аппаратов плазменной резки)
в Казахстане. Наши мастера работают как в сервисном центре, так и на выезде.
При сложном ремонте — доставка вашей техники к нам в сервис производится бесплатно.
Мы ценим клиентов и репутацию, а потому крайне тщательно относимся ко всем ремонтным работам. В нашем сервисном центре работают мастера с большим опытом. Перед каждым ремонтом мы проводим диагностику для выявления скрытых поломок.
Во время ремонта используем качественные запасные части и расходные материалы. А после ремонта, в обязательном порядке, выполняем контроль качества. Это позволяет нам гарантировать надежность ремонтных работ.
Частотный преобразователь предназначен для плавного изменения скорости и момента, а также он помогает избавиться от пусковых токов. В процессе преобразования постоянного тока в переменный инвертор создает волны переменного тока (синусоидальной, квадратной или любой другой формы). Как всякий стабильный источник питания он должен оставаться способным поставлять достаточно тока для поддержания мощности системы.
Все производители стремятся уменьшить размеры приводов, а потому размещение компонентов и плат в устройстве всё более уплотняется. Это не остаётся бесследным и приводит в какой-то степени к отказам силового оборудования. Необходимо отметить, что ремонт частотников (Р4,0-7,5 кВт) практически нецелесообразен при выходе из строя управляющей части системы. Построение аппарата (свыше 100 кВт) по модульному принципу сильно упрощает функциональную схемуи увеличивает срок службы.
Главный фактор, определяющий срок службы частотника и его бесперебойную эксплуатацию, заключается в своевременных проверках иправильном обслуживании. Кроме всего прочего электронное устройство само по себе является достаточно сложным, поэтому при эксплуатации силового оборудования с ним возникают потенциальные проблемы.
Частотники являются очень чувствительной аппаратурой за счет высокого уровня исполнительских компонентов (если даже не вдаваться в технические детали). Наиболее распространенная проблема преобразовательных устройств — это программное обеспечение. Чем больше добавленных возможностей, тем вполне вероятнее могут возникнуть потенциальные проблемы.
Обычно, починка таких устройств для пользователя обходится довольно дорого. Поэтому некоторые неисправности можно устранить самостоятельно. На самом деле, нет ничего проще, чем взять в руки инструкцию «Коды ошибок преобразователей частоты OMRON» (название взято для примера), и расшифровать сигнализирующие записи с помощью таблицы предупреждений и ошибок. Рассмотрим наиболее распространенные из них.
Содержание
- Неполадки и пути их исправления
- Замена резистора
- Сигнализация ошибок
- Электродвигатель не трогается с места
- Ремонт частотных преобразователей – алгоритм мероприятий
- Ремонт
- Ремонтировать самостоятельно или обратиться в сервис?
Неполадки и пути их исправления
Система охлаждения на моделях особенно чувствительна. Можно сказать, это одна из болевых точек механизма. Для того, чтобы максимально увеличить срок эксплуатации частотника следует хотя бы один раз в месяц делать продувание(сжатым воздухом) радиатора охлаждения, расположенного сзади корпуса. Лучше будет, если продуть корпус целиком, ведьвнутри инвертора скапливается всегда очень много пыли.
Продувание радиатора требуется, поскольку на нём крепится IGBT-ключ, через который осуществляется управление электрическим мотором. С выделением тепла радиатор капитально нагревается. Поломка может повлечь за собой перегорание полупроводникового прибора.
Часто на корпусе и радиаторе устанавливаются воздушные вентиляторы с принудительным охлаждением. Периодически их нужно проверять на работоспособность. В случае необходимой замены их несложно найти в продаже. В настоящее время ассортимент этой техники довольно широк и разнообразен.
Частый заряд и разряд, а также повышенная температура со временем приводят к старению электролитических конденсаторов частотника, что уменьшает их номинальную емкость или способствует возникновению внутренних межполюсных пробоев. В результате возможно вздутие или разрушение конденсаторов.
Замена резистора
Регулирование преобразователем частоты может осуществляться как посредством контроллера, так и вручную. Зачастую в неисправное состояние приходит потенциометр (или по-другому резистор). Управлениепроисходит двумя способами:
- с внешнего потенциометра;
- с выносной панельки инвертора.
Для смены неисправного внешнего нужно переключить в настроечном меню частотного преобразователя на опцию регулировки с выносной панельки. Также возможно самому поменять резистор. Параметры резистора и все необходимые операции подробно описываются в инструкции к аппарату.
Сигнализация ошибок
Зачастую возникают предупреждения и ошибки на дисплее устройства при запуске, хотя до остановки их не было. Как правило, после проверки кабелей и протяжек клемм сигнализация об ошибках исчезает. На большинстве моделях это расшифровывается как ошибка при перегрузке. Если один раз в три месяца делать протяжку всех клеммных соединений, такие неприятные ситуации могут вообще не возникать.
Еще одним распространенным слабым местом является то, что при регулировке частотным преобразователем с внешней выносной панельки пропадает управление. Вопреки возникающему ощущению о неисправностивсего аппарата, если просто проверить присоединение кабеля и винтов штекера в разъеме, проблема устраняется.
Электродвигатель не трогается с места
Наиболее серьезная неисправность, требующая замены либо починки частотного преобразователя. При выдаче ошибки о том, что двигатель не трогается с места, могут быть две причины:
- выход из строя электромотора;
- повреждение системы управления. Здесь не обойтись без разборки инвертора и замены электронной платы.
Если самому это сделать сложно, необходимо проконсультироваться с авторизованным сервисным центром для лучшего результата (официального поставщика компании, в нашем случае, OMRON). Иногда бывает проще приобрести новый преобразователь частоты.
При любой неисправности, прежде всего, следует проверить работоспособность электрического мотора, целостность кабельной проводки и клеммных зажимов. А уже после этого разбираться в самом устройстве. А также следует неукоснительно придерживаться правил техники безопасности и всегда помнить про профилактические работына протяжении всей жизнедеятельности аппарата.
Ремонт частотных преобразователей – алгоритм мероприятий
Наладка преобразовательного устройства осуществляется с помощью применения высокочастотных осциллографов. Работу частотника проверяютв трёх возможных режимах, это:
- в номинальном режиме;
- на холостом ходу;
- при максимально допустимой перегрузке.
Невключение тиристоров (транзисторов) частника либо разрыв в силовой цепи определяется по форме выходного напряжения преобразователя. После чего в тиристорном блоке устанавливается выбранный по нужным параметрам тиристор на смену вышедшего из строя.
Ремонт
Наладка системы управления частотником выполняется путём подачи на него питающего напряжения без силового напряжения. Осциллограф позволяет проверить соответствие длительности импульсов, подаваемых на инвертор, указанной в паспорте. В случае искажения сигналов соответствующие элементы системы подвергаются снятию и замене.
Для функционирования современных частотных преобразователей используются интегральные микросхемы. При ремонте и наладке систем помимо осциллографов и тестеров применяется специальная аппаратура.
После капитального ремонта аппарат следует включить в работу на холостом ходу. Затем, если все нормально, запустить инвертор с электродвигателем на холостом ходу, но без его нагрузки. В работе по такому режиму важно проверить отсутствие перегрева элементов привода. Завершающий контроль работы привода проводится при номинальном значении нагрузки двигателя.
После наладки техники иногда требуется прийти к определённому соотношению величин напряжения и частоты. При этом номинал частоты должен соответствовать номиналу напряжения. Для правильной настройки ЭДС следует выполнить такие операции как:
- измерение коэффициента трансформации трансформатора напряжения и активного сопротивления статора электродвигателя;
- расчёт падения напряжения, равного произведению величин активного сопротивления статора на номинальный ток двигателя, разделённому на коэффициент трансформации.
- в итоге, напряжение, снимаемое с отвода резистора, подсоединённого параллельно вторичной обмотке трансформатора, должно быть равным вычисленному значению.
Неисправность в силовой схеме может возникать в результате резких колебаний в системе инвертор—двигатель. Устранение подобных колебаний достигается регулированием резистора блока управления.
Ремонтировать самостоятельно или обратиться в сервис?
Периодическая проверка и техническое обслуживание помогут предотвратить ряд проблем, но, тем не менее преобразователи частоты выходят из строя, и этого нельзя избежать полностью. При серьёзной поломке требуется диагностика техники. Самым ответственным мероприятием считается поиск повреждённых деталей. Ведь случается, приходится искать плавающую неисправность, когда она возникает периодически при определенных условиях или просто хаотично.
В мастерской вам проведут квалифицированную диагностику, включающую в себя главным образом: считывание кодов ошибок, определение вышедших из строя узлов. Будьте готовы заплатить за ремонт.
Ремонт в мастерской – отличное решение, специалисты быстро определят слабые места, и дорогостоящий аппарат еще послужит вам не один год. Ведь бывают случаи, когда пользовательское вмешательство в устройство ухудшало состояние прибора и приводило к окончательной поломке.Если неприятность произошла в период гарантийного обслуживания, то однозначно за помощью лучше обратиться в сервис.
Частотный преобразователь на логических элементах
В процессе эксплуатации преобразователя частоты (ПЧ) рано или поздно возникают проблемы, связанные с его корректной работой. Ошибки и сбои могут происходить как при включении (настройке) частотника, так и при его эксплуатации.
При возникновении большинства ошибок преобразователь прекращает работу. Реакцию на некоторые ошибки можно программировать. Например, при возникновении сбоя ПЧ может останавливаться либо продолжать работать, выдав сообщение о неисправности. В некоторых частотных преобразователях существует так называемый «пожарный режим», когда ПЧ работает, несмотря на проблемы, вплоть до поломки и возгорания.
Для начала рассмотрим типичные сообщения об авариях и ошибках ПЧ, которые отображаются на экране пользователя. Отметим, что большинство этих сообщений передаются по каналу связи (если он присутствует) в контроллер и соответствующим образом обрабатываются.
1. Перегрузка по току
Код на дисплее: OC (Over Current). Это сообщение говорит о том, что выходной ток преобразователя частоты превысил допустимое значение. Если данная ошибка появилась при первом пуске ПЧ, необходимо проверить соответствие номинального тока частотника номинальному и реальному току двигателя – возможно, произошло замыкание внутри двигателя. В некоторых типах ПЧ перегрузка OC может разделяться на 3 разных ошибки – перегрузка по току при разгоне, при торможении, при работе на постоянной скорости.
2. Перегрузка
Код на дисплее: OL (Over Load). Данное сообщение связано с предыдущим и в некоторой степени дублирует его. Сообщение OL может высвечиваться из-за срабатывания внутренней электронной тепловой защиты двигателя, либо из-за превышения механической нагрузки на двигатель (превышения момента). Уровень перегрузки устанавливается при настройке частотного преобразователя, причем задаются как уровень тока (в амперах или процентах), так и время реакции в секундах.
3. Превышение напряжения
Код на дисплее: OV (Over Voltage). Это сообщение появляется, когда напряжение на звене постоянного тока превышает допустимый порог. В первую очередь данная ошибка возникает во время торможения, когда электродвигатель входит в режим генерации электроэнергии. Эту проблему можно решить несколькими способами – увеличить время торможения, применить тормозной резистор, отключить торможение (остановка двигателя на свободном выбеге), поднять предельный уровень ограничения перенапряжения при наличии соответствующей возможности.
4. Низкое напряжение
Код на дисплее: LV (Low Voltage). Данное сообщение может появиться, когда напряжение на звене постоянного тока падает ниже установленного порога. Возможные причины: пониженное напряжение в сети, пропадание одной из фаз. К слову, частотный преобразователь может продолжать работать без одной или даже двух фаз, если подключенный двигатель допускает работу на пониженной мощности и отключено обнаружение пропадания фазы.
5. Перегрев ПЧ
Код на дисплее: OH (Over Heat). Это сообщение говорит о том, что температура ПЧ слишком высока. В первую очередь следует проверить исправность внутренних вентиляторов преобразователя и прочистить его сжатым воздухом. Также необходимо проверить отвод тепла от ПЧ, температуру и циркуляцию воздуха внутри электрошкафа. Возможно, потребуется установить дополнительное охлаждение или уменьшить нагрузку.
Мы перечислили лишь основные сообщения о неисправностях. Их число может доходить до нескольких десятков, что позволяет точнее настраивать работу преобразователя и диагностировать неисправности. В различных моделях ПЧ эти сообщения могут индицироваться по-разному, например, в частотнике ProStar PR6000 они выглядят как Er01, Er02, и т.д., но смысл имеют аналогичный.
При ряде неисправностей преобразователей частоты сообщения на экране не выводятся. В основном, это связано с проблемами питания или с фатальными сбоями в работе ПЧ. Кроме того, если существуют проблемы с первоначальным запуском, то есть вероятность ошибки в подключении цепей управления (запуска). Рассмотрим подробнее такие неисправности.
6. Двигатель не запускается
Шаг 1. Проверяем подключение питания и электродвигателя. Шаг 2. Проверяем цепи запуска. В некоторых моделях ПЧ для запуска двигателя необходимо активировать более одного входа, например, «Пуск» и «Вперед», а также вход разрешения работы. Шаг 3. Проверяем способ задания частоты. Проще всего активировать и задать скорость вращения в панели управления, а затем, после устранения проблем, переключиться на задание скорости с внешнего источника.
7. Двигатель вращается в неправильном направлении
Чаще всего в приводах используется «правое» вращение двигателя. Изменить направление вращения можно двумя способами.
- Аппаратный способ. Необходимо поменять любые две фазы питания двигателя на выходе ПЧ.
- Программный способ. Необходимо изменить направление вращения в соответствующем меню («Forward/Reverse»).
8. Двигатель не вращается с нужной скоростью
Причиной может быть неверное задание частоты, либо слишком большая нагрузка на двигатель (при неправильной уставке защиты). Также существует вероятность неверной установки значений верхней и нижней границ выходной частоты.
9. Проблемы с разгоном и торможением
Если двигатель слишком медленно разгоняется, и время разгона существенно превышает установленное, есть вероятность, что срабатывает функция токоограничения при разгоне. Если же двигатель слишком долго тормозит, то необходимо проверить в меню преобразователя настройки такого параметра, как ограничение перенапряжения, и убедиться в правильности подключения тормозного резистора.
10. Слишком большой ток и температура двигателя
Перегрев электродвигателя является следствием чрезмерной нагрузки на его валу. Следует принять меры по защите двигателя и частотного преобразователя путем настройки соответствующих параметров через меню.
В общем случае при возникновении неисправностей в работе преобразователя частоты следует обратить внимание на температуру двигателя и сообщения на экране, а также обратиться к руководству по эксплуатации.
Другие полезные материалы:
Выбор преобразователя частоты
Назначение сетевых и моторных дросселей
Использование тормозных резисторов с ПЧ
Часто задаваемые вопросы
Как я могу вернуть (обменять) товар?
В течение 7 дней вы можете вернуть или обменять товар. Для этого необходимо обратиться в Службу Контроля Качества на бесплатную линию 8 (800) 775 22 19 доб 140. Вернуть товар Вы можете самостоятельно, либо силами нашего отдела доставки.
Товар сломался до окончания гарантийного срока
Можете обратиться в сервисный центр производителя в Вашем городе по контактам указанным в гарантийном талоне, либо в службу контроля качества MirCli на бесплатную линию 8 800 775 22 19 доб 140. В случае невозможности проведения гарантийного ремонта в установленный законом срок, товар будет заменен.
Как отремонтировать товар если гарантия закончилась?
Вы можете обратиться в нашу службу контроля качества на бесплатную линию 8 (800) 775 22 19 доб 140. Мы имеем договоренности с сервисными центрами по постгарантийному ремонту. В большинстве случаев посгарантийный ремонт осуществляется бесплатно.
Я обнаружил повреждение после приемки товара
Товар ненадлежащего качества подлежит замене в течение 7 дней. При наличии видимых механических повреждений, обнаруженных после приемки товара, Вам необходимо выслать фотографии поврежденного товара на почту 140@mircli.ru. Каждый случай тщательно разбирается Службой Контроля Качества.
Что нужно проверить при получении заказа?
Проверьте соответствие маркировки заказанного товара в чеке и на самой коробке, а также убедитесь в отсутствии видимых механических повреждений коробки или самого товара.