Инструкция по созданию машины времени

Время на чтение 7 мин.

В прошлом материале мы рассказали о том, что путешествия во времени, в принципе, не противоречат тем законам физики, о которых мы знаем. Более того, теория относительности прямо говорит, что время течет неодинаково в разных областях нашей Вселенной, и при определенных обстоятельствах мы обязательно переместимся вперед или назад по отношению к наблюдателям, находящимся в другой системе отсчета. Однако мы все еще не знаем, возможны ли в нашем мире перемещения во времени, не связанные с релятивистскими эффектами. Курт Гёдель в 1949 году доказал, что уравнения Эйнштейна допускают существование таких миров, а его последователи вывели еще несколько решений, описывающих подобные Вселенные. Но доказать, что мы живем именно в такой до сих пор не удалось. Впрочем, даже в этом случае есть лазейки.

Способ ноль. Пассивный и не очень интересный

Первый способ путешествия во времени обозначим нулевым, потому что, строго говоря, это не вполне путешествие. Для того, чтобы заглянуть в прошлое, достаточно просто задрать голову ночью и посмотреть на небо. Здесь снова вспомним теорию относительности, которая говорит, что скорость света в вакууме постоянна и составляет почти 300 тысяч км/с. Казалось бы, много, но расстояния во Вселенной настолько огромны, что свет звезд доходит до нас за сотни, тысячи, миллионы лет. Даже от Солнца свет доходит до Земли за 8 минут 20 секунд. Есть даже единица измерения расстояния в космосе — световой год (то есть путь, который свет проходит за год, примерно равный 9,5 миллиарда километров). Одна из самых ярких звезд в Северном полушарии — Арктур — находится на расстоянии 37,3 светового года. Значит, мы видим ее такой, какой она была почти 40 лет назад. Полярная звезда значительно дальше — ее мы видим по состоянию на 450 лет назад.

Так что звездное небо — это карта из более-менее далекого прошлого. Но, конечно, это способ не путешествия в минувшее, а скорее, его созерцания.

Способ 1. Разогнаться до околосветовой скорости

Итак, берем в действие эффекты специальной теории относительности. Стартуя с Земли на космическом корабле и разогнавшись до околосветовой скорости, мы на себе испытаем эффект замедления времени. Он описан в советской дилогии «Москва — Кассиопея» и «Отроки во Вселенной». Экипаж корабля, набранный из подростков, должен был лететь к альфе Кассиопеи 27 лет, но из-за сбоя звездолет разгоняется до скорости света. В то время как для людей на борту прошло несколько часов, для земного наблюдателя пролетело несколько десятилетий.

Таким образом рецепт путешествия в земное будущее прост: летим куда-то на околосветовой скорости и возвращаемся обратно. В зависимости от времени полета мы переместимся в будущее на десятки или даже сотни лет. Проблема в том, что пока что достигнуть такой скорости мы не можем. Самый быстрый объект, созданный человеком, — зонд Parker Solar Probe — благодаря гравитационным маневрам развил скорость 163 км/с. Очень быстро, но ничтожно мало по сравнению с 300 тысячами.

Есть и еще одна причина пытаться достичь скорости света в контексте путешествий во времени. Если мы найдем способ двигаться со сверхсветовой скоростью (а это, невзирая на сказанное ранее, в принципе возможно), то это приведет к созданию замкнутой времениподобной кривой — по сути, траектории, по которой возможно путешествие в прошлое. Все дальнейшие способы, которые будут описаны в этой статье, предполагают, что такие кривые либо существуют в нашей Вселенной, либо могут быть созданы. Впрочем, некоторые физики, например Стивен Хокинг, полагают, что их существование невозможно. Хокинг даже вывел гипотезу о защищенности хронологии — правда, так и не сумел ее доказать.

Способ 2. Прыгнуть в норку!

Речь идет о кротовых норах, или червоточинах. Это гипотетические тоннели в пространстве-времени, которые как бы напрямую соединяют две области Вселенной. Благодаря им можно мгновенно перемещаться между отдаленными координатами как в пространстве, так и во времени. Такие объекты предсказаны еще сами Эйнштейном — в 1935 году он совместно с Натаном Розеном предложил решение уравнений, предполагающих наличие соединения между областями пространства. Такое соединение назвали мостом Эйнштейна — Розена. В контексте нашей проблемы единственный его недостаток — он непроходим. Мост сколлапсирует прежде, чем гипотетический путешественник во времени успеет добраться от одного устья кротовой норы к другому.

Но не все потеряно! В 1988 году Кип Торн и Майк Моррисон подарили нам проходимую кротовую нору, которую так и назвали — червоточина Моррисона — Торна. Правда, здесь тоже есть нюанс: чтобы устье этого прохода удерживалось открытым, необходима экзотическая материя — такое вещество, которое обладает отрицательной массой и вследствие этого не притягивается, а отталкивается под действием гравитацией. Впрочем, спустя год Мэтт Виссер показал, что возможны и такие червоточины, путь в который лежит не через область с экзотической материей.

Как бы там ни было, а червоточины пока что остаются гипотетическими объектами. Вполне вероятно, что нам просто пока не удалось обнаружить ни одной из них.

Способ 3. Вращаться вокруг бесконечного цилиндра

Хотя чаще всего пионером замкнутых времениподобных линий называют Карла Гёделя, за двенадцать лет до его работы нидерландский физик Виллем ван Стокуб опубликовал статью, в которой описал одно из самых простых решений уравнений Эйнштейна. Справедливости ради, нужно отметить, что и он не был пионером, а независимо переоткрыл решения, выведенные Корнелием Ланцошем еще в 1924-м.

Как бы там ни было, а уравнения Ланцоша — Стокуба описывают гравитационное поле, создаваемое пылью, вращающейся вокруг оси циллиндрической симметрии. Это первые в истории решения, которые допустили создание замкнутой времениподобной кривой. Таким образом, если мы будем вращаться вокруг достаточно длинного (не меньше нескольких световых лет) цилиндра, то попадем в эту кривую и вернемся в прошлое.

Доказал, что решения Ланцоша — Стокуба создают замкнутую времениподобную кривую, американский физик Франк Типлер. В честь него гипотетический объект назвали цилиндром Типлера. Все, что нам нужно, найти такой вращающийся цилиндр, полететь к нему, сделать несколько оборотов (сколько — зависит от того, как далеко мы хотим отправиться в прошлое) и вернуться на Землю. Только где же нам найти такой объект?

На роль цилиндра Типлера могут претендовать космические струны — гипотетические деформации пространства-времени, которые возникли в тот момент, когда в только что родившейся Вселенной происходило разделение фундаментальных взаимодействий. Это разделение вызвало фазовый переход, которые происходил не одновременно во всех частях Вселенной. Из-за этого в пространстве-времени и образовались дефекты, которые мы называем космическими струнами.

Струны предсказаны очень многими теориями, поэтому их существование считается практически доказанным. Осталось только обнаружить их — и использовать для путешествия в прошлое.

Способ 4. Создать вокруг себя пузырь

Выше мы говорили о том, что для создания замкнутой времениподобной линии необходимо развить сверхсветовую скорость. Но как быть с тем, что это невозможно? На помощь приходит пузырь Алькубьерре, о котором мы подробно писали, когда разбирали возможность варп-двигателя. Вкратце суть состоит в том, чтобы сжать пространство перед кораблем и растянуть позади. Тогда сам корабль окажется в своеобразном пузыре, который может перемещаться по пространству-времени с какой угодно скоростью, ведь сам звездолет будет покоиться. Это не нарушает принципов теории относительности. Увы, здесь тоже есть загвоздка: для создания такого пузыря требуется огромное количество энергии, и нам не хватит целого Солнца, чтобы ее получить.

Создание машины времени возможно. Эксперименты со временем. Теоретическая часть

Время на прочтение
15 мин

Количество просмотров 106K

Буквально на днях, после прочтения статьи Путешествия во времени и программирование я загорелся идеей об экспериментальных исследованиях, которые позволили бы получить практические ответы на вопросы о перемещении во времени. Но прежде чем переходить к экспериментам, требуется разработать теоретическое обоснование о возможности преодоления времени между прошлым и будущим. Чем собственно я занимался в течении последних дней. Исследование основано на теории относительности Эйнштейна и релятивистских эффектах, попутно затрагивая также квантовую механику и теорию суперструн. Думаю мне удалось получить положительные ответы на поставленные вопросы, подробно рассмотреть скрытые измерения и попутно получить объяснение некоторых явлений, например, природу корпускулярно-волнового дуализма. А также рассмотреть практические способы передачи информации между настоящим и будущем. Если вас тоже волнуют эти вопросы то добро пожаловать под кат.

Обычно я не занимаюсь теоретической физикой, и в реальности веду довольно однообразную жизнь занимаясь софтом, железом, и отвечая на однотипные вопросы пользователей. Поэтому если найдутся неточности и ошибки надеюсь на конструктивное обсуждение в комментариях. Но мимо данной темы я не смог пройти. В голове то и дело появлялись новые идеи, которые со временем образовались в единую теорию. Я как то не рвусь самому отправляться в прошлое или будущее в котором меня никто не ожидает. Но предполагаю, что в будущем это станет возможно. Меня больше интересуют решение прикладных задач связанных с созданием информационных каналов для передачи информации между прошлым и будущем. А также волнуют вопросы о возможности изменения прошлого и будущего.

Путешествие в прошлое связано с большим количеством трудностей, которые сильно ограничивают возможность такого путешествия. На данном этапе развития науки и техники, думаю преждевременно браться за реализацию таких идей. Но прежде чем понять, можем ли мы изменить прошлое, необходимо определиться с тем, можем ли изменить настоящее и будущее. Ведь суть любых изменений прошлого сводится к изменению последующих событий относительно заданной точки времени, к которому мы хотим вернуться. Если в качестве заданной точки взять текущий момент времени, то необходимость перемещения в прошлое отпадает, также как отпадает большое количество трудностей связанных с таким перемещением. Остается только узнать цепь событий, которые должны произойти в будущем, и попытаться разорвать эту цепь, чтобы получить альтернативное развитие будущего. На самом деле, нам даже не нужно знать полную цепочку событий. Необходимо достоверно узнать сбудется или нет одно конкретное событие в будущем (которое будет объектом исследования). Если сбудется, то значит, цепь событий привело к тому, чтобы это событие сбылось. Тогда у нас появляется возможность повлиять на ход эксперимента и сделать так, чтобы это событие не сбылось. Получится ли нам это сделать вопрос пока не ясный. И дело не в том, сможем ли мы это сделать (экспериментальная установка должна позволить это сделать), а в том, возможно ли альтернативное развитие реальности.

В первую очередь возникает вопрос — как можно достоверно узнать то, что еще не случилось? Ведь все наши знания о будущем всегда сводятся только к прогнозам, а для подобных экспериментов прогнозы не годятся. Полученные в ходе эксперимента данные должны неопровержимо доказывать то, что должно произойти в будущем, как о уже произошедшем событии. Но на самом деле есть способ получения таких достоверных данных. Если как следует рассмотреть теорию относительности Эйнштейна и квантовую механику, то можно найти такую частицу, которая сможет связать прошлое и будущее в одну линию времени и передать нам необходимую информацию. В качестве такой частицы выступает фотон.

Суть эксперимента сводится к знаменитому опыту с двумя щелями с отложенным выбором, который был предложен в 1980 г. физиком Джоном Уилером. Есть много вариантов реализации такого эксперимента, одно из которых приводилось на Хабре. В качестве примера рассмотрим эксперимент с отложенным выбором, который был предложен Скалли и Дрюлем:

На пути источника фотонов — лазера — ставят светоделитель, в качестве которого выступает полупрозрачное зеркало. Обычно такое зеркало отражает половину падающего на него света, а другая половина проходит насквозь. Но фотоны, будучи в состоянии квантовой неопределенности, попадая на светоделитель будут выбирать оба направления одновременно.

После прохождения светоделителя фотоны попадают в даун-конверторы. Даун-конвертор — это прибор, который получает один фотон на входе и производит два фотона на выходе, каждый с половиной энергии («даун-преобразование») от исходного. Один из двух фотонов (так называемый сигнальный фотон) направляется вдоль исходного пути. Другой фотон, произведённый даун-конвертором (именуемый холостым фотоном), посылается в совершенно другом направлении.

Используя полностью отражающие зеркала, расположенные по бокам, два луча снова собираются вместе и направляются к детекторному экрану. Рассматривая свет в виде волны, как в описании Максвелла, на экране можно видеть интерференционную картину.

В эксперименте можно определить какой путь к экрану выбрал сигнальный фотон, путём наблюдения, который из даун-конверторов испустил холостой фотон-партнёр. Так как есть возможность получить информацию о выборе пути сигнального фотона (даже хотя она является полностью косвенной, поскольку не взаимодействуем ни с одним сигнальным фотоном) — наблюдение за холостым фотоном вызывает предотвращение возникновения интерференционной картины.

Итак. Причем тут опыты с двумя щелями

Дело в том, что холостые фотоны, испускаемые даун-конверторами, могут проходить гораздо большее расстояние, чем их сигнальные фотоны-партнёры. Но какое бы расстояние не прошли холостые фотоны, картина на экране всегда будет совпадать с тем, будут ли холостые фотоны зафиксированы или нет.

Допустим, что расстояние холостого фотона до наблюдателя во много раз превышает, чем расстояние сигнального фотона до экрана. Получается, что картина на экране будет заранее отображать тот факт, будут ли наблюдать за холостым фотоном-партнёром или нет. Если даже решение о наблюдение за холостым фотоном принимает генератор случайных событий.

Расстояние, которое может пройти холостой фотон, никак не влияет на результат, который отображается на экране. Если загнать такой фотон в ловушку и, например, заставить многократно крутиться по кольцу, то можно растянуть данный эксперимент на произвольно долгое время. Не зависимо от продолжительности эксперимента мы будем иметь достоверно установленный факт того, что должно случиться в будущем. Например, если решение о том, будем ли мы «ловить» холостой фотон зависит от подбрасывания монеты, то уже в начале эксперимента мы будем знать, «каким образом упадет монетка». Когда на экране появиться картинка, это будет уже свершившийся факт еще до подбрасывания монеты.

Возникает интересная особенность, которая кажется меняет причинно-следственную связь. Мы можем спросить – каким образом следствие (которое произошло в прошлом) может формировать причину (которое должно произойти в будущем)? А если причина еще не наступала, то каким образом мы можем наблюдать следствие? Чтобы это понять попробуем углубиться в специальную теорию относительности Эйнштейна и разобраться с тем, что происходит на самом деле. Но в этом случае нам придется рассматривать фотон как частицу, чтобы не смешивать квантовую неопределенность с теорией относительности.

Почему именно фотон

Это именно та частица, которая идеально подходит для данного эксперимента. Конечно, квантовой неопределенностью обладают и другие частицы, такие как электроны и даже атомы. Но именно фотон имеет предельную скорость движения в пространстве и для него не существует само понятие времени, поэтому оно может беспрепятственно пересекать временное измерение, связывая прошлое с будущем.

Картина времени

Чтобы представить время, необходимо рассмотреть пространство-время в виде непрерывного блока растянутого во времени. Срезы, формирующие блок, являются моментами настоящего времени для наблюдателя. Каждый срез представляет пространство в один момент времени с его точки зрения. Этот момент включает в себя все точки пространства и все события во вселенной, которые представляются для наблюдателя как происходящее одновременно. Объединяя эти срезы настоящего, расположив одну за другим в том порядке, в котором наблюдатель переживает эти временные слои, мы получим область пространства-времени.

Но в зависимости от скорости движения, срезы настоящего будут делить пространство-время под разными углами. Чем больше скорость движения относительно других объектов, тем больше получается угол среза. Это означает, настоящее время движущегося объекта не совпадает с настоящим временем других объектов, относительно которых оно движется.

По направлению движению, срез настоящего времени объекта смещается в будущее относительно неподвижных объектов. В обратном направлении движения, срез настоящего времени объекта смещается в прошлое относительно неподвижных объектов. Это происходит потому, как свет, летящий на встречу движущегося объекта достигает его раньше, чем свет, догоняющей движущийся объект с противоположный стороны. Максимальная скорость движения в пространстве обеспечивает максимальный угол смещения текущего момента времени. Для скорости света этот угол составляет 45°.

Замедление времени

Как я уже писал, для частицы света (фотона) не существует понятие времени. Попробуем рассмотреть причину этого явления. Согласно специальной теории относительности Эйнштейна по мере увеличения скорости объекта происходит замедление времени. Это связано с тем, что по мере увеличения скорости движущегося объекта для света требуется преодолевать все большее расстояние за единицу времени. Например, при движении автомобиля, свету его фар необходимо преодолевать большее расстояние за единицу времени, чем если бы автомобиль стоял на парковке. Но скорость света является предельной величиной и не может увеличиваться. Поэтому складывание скорости света со скоростью движения автомобиля не приводит к увеличению скорости света, а приводит к замедлению времени, согласно формуле:

где r – длительность времени, v – относительная скорость движения объекта.
Для наглядности рассмотрим еще один пример. Возьмем два зеркала и расположим их противоположно одну над другой. Допустим, что луч света будет многократно отражаться между этими двумя зеркалами. Движение луча света будет происходить по вертикальной оси, при каждом отражении отмеряя время как метроном. Теперь начнем двигать наши зеркала по горизонтальной оси. С увеличением скорости движения, траектория движения света будет наклоняться по диагонали, описывая зигзагообразное движение.

Чем больше скорость движения по горизонтали, тем сильнее будет наклонена траектория движения луча. При достижении скорости света рассматриваемая траектория движения будет выпрямлена в одну линию, как если бы мы растянули пружину. То есть свет уже перестанет отражаться между двумя зеркалами и будет двигаться параллельно горизонтальной оси. А значит наш «метроном» перестанет отмерять ход времени.

Поэтому для света не существует измерения времени. Фотон не имеет ни прошлого, ни будущего. Для него есть только текущий момент, в котором оно существует.

Сжатие пространства

Теперь попробуем разобраться с тем, что происходит с пространством на скорости света, в котором пребывают фотоны.

Для примера возьмем некий объект длиной в 1 метр и будем ускорять его до около световой скорости. По мере увеличения скорости объекта мы будем наблюдать релятивистское сокращение длины движущегося объекта, согласно формуле:

где l – это длина, а v – относительная скорость движения объекта.

Под словом «мы будем наблюдать» я имею ввиду неподвижного наблюдателя со стороны. Хотя с точки зрения движущегося объекта, неподвижные наблюдатели так же будут сокращаться в длине, ибо наблюдатели будут с той же скоростью двигаться в противоположном направлении относительно самого объекта. Отметим, что длина объекта является измеряемой величиной, а пространство является точкой отсчета для измерения этой величины. Мы также знаем, что длина объекта имеет фиксированную величину в 1 метр и не может меняться относительно пространства, в котором оно измерено. Значит, наблюдаемое релятивистское сокращение длины говорит о том, что сокращается пространство.

Что произойдет, если объект постепенно ускориться до скорости света? На самом деле ни одна материя не может ускоряться до скорости света. Можно максимально приближаться к этой скорости, но достичь скорости света не возможно. Поэтому с точки зрения наблюдателя, длина движущегося объект будет бесконечно сокращаться, пока не достигнет минимально возможной длины. А с точки зрения движущегося объекта, все относительно неподвижные объекты в пространстве будут бесконечно сжиматься, пока не сократятся до минимально возможной длины. Согласно специальной теории относительности Эйнштейна мы также знаем одну интересную особенность — не зависимо от скорости движения самого объекта, скорость света всегда остается неизменной предельной величиной. Значит, для частицы света всё наше пространство сжато до размеров самого фотона. Причем сжаты все объекты, не зависимо от того двигаются они в пространстве или остаются неподвижными.

Тут можно заметить, что формула релятивистского сокращения длины недвусмысленно дает нам понять, что при скорости света всё пространство будет сжато до нулевого размера. Я же писал о том, что пространство будет сжато размеров самого фотона. Полагаю, оба вывода являются правильными. С точки зрения Стандартной модели фотон является калибровочным бозоном, выполняющую роль переносчика фундаментальных взаимодействий природы, для описания которого требуется калибровочная инвариантность. С точки зрения М-теории, которая на сегодняшний день претендует на звание Единой теории всего, считается, что фотон представляет из себя колебание одномерной струны со свободными концами, которая не имеет размерности в пространстве и может содержать в себе свернутые измерения. Я честно не знаю по каким расчетам сторонники теории суперструн пришли к подобным выводам. Но то, что наши расчеты ведут нас к тем же результатам думаю говорит о том, что мы смотрим в правильном направлении. Расчеты теории суперструн перепроверялись десятилетиями.

Итак. К чему же мы пришли:

  1. С точки зрения наблюдателя, всё пространство фотона свернуто до размеров самого фотона в каждой точке траектории движения.
  2. С точки зрения фотона, траектория движения в пространстве свернуто до размеров самого фотона в каждой точке пространства фотона.

Рассмотрим какие выводы следуют из всего что мы узнали:

  1. Линия текущего времени фотона пересекает линию нашего времени под углом 45°, в следствии которого наше измерение времени для фотона является нелокальным пространственным измерением. Это значит, что если бы мы могли перемещаться в пространстве фотона, то мы бы перемещались от прошлого к будущему или от будущего к прошлому, но эта история была бы составлена из разных точек нашего пространства.
  2. Пространство наблюдателя и пространство фотона непосредственно не взаимодействуют, их связывает движение фотона. При отсутствии движения отсутствуют угловые расхождения в линии текущего времени, и оба пространства сливаются в одну.
  3. Фотон существует в одномерном пространственном измерении, в следствии которого движение фотона наблюдается только в пространственно-временном измерении наблюдателя.
  4. В одномерном пространстве фотона не существует движения, в следствии чего фотон заполняет свое пространство от начальной до конечной точки, в пересечении с нашим простраством дающее начальные и конечные координаты фотона. Данное определение говорит, что в своём пространстве фотон выглядит как вытянутая струна.
  5. Каждая точка пространства фотона содержит проекцию самого фотона во времени и в пространстве. Имеется ввиду, что фотон существует в каждой точке этой струны, представляя разные проекции фотона во времени и в пространстве.
  6. В каждой точке пространства фотона сжата полная траектория его движения в нашем пространстве.
  7. В каждой точке пространства наблюдателя (где может пребывать фотон) сжата полная история и траектория самого фотона. Данный вывод следует из первого и пятого пункта.

Пространство фотона

Давайте попробуем разобраться что из себя представляет пространство фотона. Признаюсь, трудно представить что такое пространство фотона. Разум сцепляется за привычное и пытается провести аналогию с нашим миром. А это приводит к ошибочным выводам. Чтобы представить другое измерение нужно отбросить привычные представления и начать думать по другому.

Итак. Представьте себе лупу, собирающее в фокусе всю картину нашего пространства. Допустим, что мы взяли длинную ленту и расположили фокус лупы на этой ленте. Это есть одна точка в пространстве фотона. Теперь немного передвинем лупу параллельно нашей ленте. Точка фокуса также передвинется по ленте. Это уже другая точка в пространстве фотона. Но чем отличаются эти две точки? В каждой точке есть панорама всего пространства, но проекция выполнена из другой точки нашего пространства. К тому же, пока мы передвигали лупу успело пройти какое то время. Получается, что пространство фотона в чем то похоже на кинопленку, снятую с движущегося автомобиля. Но есть некоторые отличия. Пространство фотона имеет только длину и не имеет ширину, поэтому там фиксируется только одно измерение нашего пространства — от начальной до конечной траектории фотона. Так как в каждой точке записана проекция нашего пространства, то в каждой из них имеется наблюдатель! Да да, ведь в каждой точке фиксируются одновременные события с точки зрения самого фотона. И раз уж начальные и конечные траектории фотона расположены в одной линии времени — это одновременные события для фотона, которые затрагивают его в разных точках своего пространства. В этом основное отличие от аналогии с кинопленкой. В каждой точке пространства фотона получается одинаковая картина из разных точек обзора, и отражающая разные моменты времени.

Что происходит, когда фотон движется? Пробегает волна по всей цепочки пространства фотона, когда пересекается с нашим пространством. Волна затухает когда сталкивается с препятствием и передает ему свою энергию. Возможно пересечение пространства фотона с нашим пространством создает момент импульса элементарной частицы, называемое также спином частицы.

А теперь посмотрим как выглядит фотон в нашем мире. С точки зрения наблюдателя пространство фотона свернуто в размеры самого фотона. По сути это самое свернутое пространство и является самим фотоном, отдаленно напоминающую струну. Струна построенная из симметричных проекций самого себя из разных точек пространства и времени. Соответственно фотон содержит в себе всю информацию о самом себе. В любой точке нашего пространства он “знает” весь путь, и все события прошлого и будущего, касающегося самого фотона. Я считаю, что фотон безусловно может предсказывать свое будущее, нужно только поставить правильный эксперимент.

Выводы

1. Остается масса вопросов, ответы на которых трудно получить без проведения экспериментов. Не смотря на то, что подобные эксперименты с двумя щелями проводились много раз, и с различными модификациями, в интернете очень трудно найти об этом информацию. Даже если удается что-то найти, нигде не приводятся вразумительных объяснений сути происходящего и анализа результатов эксперимента. Большинство описаний не содержит никаких выводов и сводится к тому что, «есть такой парадокс и никто не может его объяснить» или «если вам кажется что вы что то поняли, значит вы ничего не поняли» и т. д. А между тем я считаю, что это перспективное направление исследования.

2. Какую информацию можно передавать из будущего в настоящее? Очевидно, что мы можем передать два возможных значения, когда мы будем или не будем наблюдать за холостыми фотонами. Соответственно, в текущем времени мы будем наблюдать волновую интерференцию или скопление частиц из двух полос. Имея два возможных значение можно использовать бинарное кодирование информации и передавать любую информацию из будущего. Для этого потребуется должным образом автоматизировать этот процесс, с использованием большого количества квантовых ячеек памяти. В этом случае мы сможем получать тексты, фотографии, аудио и видео всего, что нас ожидает в будущем. Также можно будет получать передовые разработки в области программных продуктов и возможно даже телепортировать человека, если заранее отправят инструкцию, как построить телепорт.

3. Можно заметить, что достоверность получаемой информации относиться только к самим фотонам. Из будущего может быть отправлена заведомо ложная информация, ведущая нас в заблуждение. Например, если подбросили монетку, и упала решка, но мы отправили информацию, что упал орел, то мы сами вводим себя в заблуждение. Достоверно можно утверждать только то, что отправленная и полученная информация не противоречат друг другу. Но если мы решим ввести себя в заблуждение, то думаю, со временем сможем узнать, почему мы решили так поступить.
Кроме этого, мы не можем точно определить из какого времени получена информация. Например, если мы хотим узнать что произойдет через 10 лет, то нет гарантии того, что мы отправили ответ гораздо раньше. Т.е. можно сфальсифицировать время отправки данных. Думаю для решения этой проблемы может помощь криптографию с открытыми и закрытыми ключами. Для этого потребуется независимый сервер, занимающийся шифрованием и расшифрованием данных, и хранящий в себе пары открытых-закрытых ключей, сформированных на каждый день. Сервер может по запросу шифровать и расшифровать наши данные. Но пока у нас не будет доступа к ключам, мы не сможем сфальсифицировать время отправки и получения данных.

4. Рассматривать результаты экспериментов только с точки зрения теории относительно было бы не совсем правильным. Хотя бы в силу того, что СТО имеет сильную предопределенность будущего. Не приятно думать, что всё предопределено судьбой, хочется верить, что у каждого из нас есть выбор. А если есть выбор, значит должны быть альтернативные ветки реальности. Но что будет, если мы решим действовать по другому, вопреки тому, что отображается на экране? Возникнет новая петля, где мы тоже решим действовать по другому, и это приведет к возникновению бесконечного количества новых петель с противоположными решениям? Но если есть бесконечное количество петель, то мы изначально должны были видеть на экране смесь интерференций и двух полос. А значит, мы изначально не могли бы определиться с противоположным выбором, что снова приводит нас к парадоксу… Я склоняюсь к мысли, что если существуют альтернативные реальности, то на экране будет отображаться только один вариант из двух возможных, не зависимо от того, сделаем мы такой выбор или нет. Если мы сделаем другой выбор, мы создадим новую ветку, где изначально на экране будет показан уже другой вариант из двух возможных. Возможность сделать другой выбор будет означать о существовании альтернативной реальности.

5. Существует вероятность того, что как только экспериментальная установка будет включена, будущее окажется предопределенным. Возникает такой парадокс, что установка сама предопределяет будущее. Сможем ли мы разорвать это кольцо предопределенность, ведь у каждого есть свобода выбора? Или же наша «свобода выбора» будет подчинена хитрым алгоритмам предопределенности, и все наши попытки что то изменить, в конце концов сложатся в цепь событий, которые приведут нас к данной предопределенности? Например, если мы знаем номер выигрышной лотереи, то у нас есть шанс найти этот билет и получить выигрыш. Но если мы также знаем имя победителя, то мы уже не сможем ничего изменить. Может даже кто то другой должен был выиграть лотерею, но мы определили имя победителя и создали цепь событий, которая привела к тому, что предсказанный человек выиграет эту лотерею. Трудно ответить на эти вопросы без проведения экспериментальных опытов. Но если такое имеет место, то единственная возможность избежать предопределенности видеться в том, чтобы не пользоваться этой установкой и не заглядывать в будущее.

Записывая эти выводы, мне вспоминаются события фильма «Час расплаты». Поражает то, насколько точно совпадают детали фильма с нашими расчетами и выводами. Ведь мы не стремились получит именно такие результаты, а просто хотели разобраться с происходящим и следовали формулам теории относительности Эйнштейна. И всё же, если есть такой уровень совпадения, то видимо, мы не одиноки в своих расчетах. Возможно, подобные выводы уже были сделаны десятки лет назад…

Introduction: How to Build a Time Machine (Vortex Distortion Space and Time Dilating Device)

Well lets put it this way, ive always had this thing about traveling through time, and having a time machine. So i set about making one, i decided that instead of being a vessel to travel in, i would rather have something portable.

Many hours thinking i came to a conclusion. If im going to be traveling through time, the actual time machine would have to be timeless (not out of place in the past, present day, or the future)

So eventually i decided to make something that resembled a time piece, mixed with an old compass, and various other inspirations, some from various steam punk items.

However i did not want to make something that was steam punk, as i personally find alot of steam punk to be a bit over comic like, and a bit to fantastical.

So, heres how i did it.

Materials consist of —

Alot of scrap and junk

corrugated cardboard

Mount card

PVA glue

Super glue

Black paint

Spray paint

Leather

Wood

Some thicker mount card

A few Special oddments — for me this was the lenses.

Step 1: Building a Base

Ok, now the base of my time machine was modeled around two ring type peices of metal, and as with the rest of the -ible, you kinda have to work things out for yourself too!

Firstly, i set about cutting out some ring shaped pieces of card, As you can see from the pics below.

Obviously, you could just create this thing from scratch using cardboard. But i think a good scavinge can always turn a good result — The metal sections in the first picture are off an old repromaster! bout 20,000 pounds worth of kit in there day ( we recently scraped ours)

I basically used these as a shape to trace onto the card.

Cut as many as you like to give it a good depth that your happy with.

I recommend corrugated card as it is easily to get a thick depth, its easy to cut, and great for gluing in later steps.

Step 2: Lots, and Lots of Glue!

Ok, firstly stack up your pieces, here i have about 4/5 layers of corrugated, and a layer of mount board either side.

picture 2 — Holding the inside cover the out side in PVA Glue, make sure you get it all in the gaps, soak it in the stuff. Then do the same for the inside.

Picture 3 — Glue your scavenged parts to the top and bottom — i found that PVA was strong enough to hold them in place.

Picture 4 — Finally just glue a strip of paper around the outside and inside to neaten it up

Leave to dry over night, or longer if you can wait.

Step 3: A Bit of Paint

Ok, so, you should have something looking like the picture below. Before we start filling the hole with various bits of stuff, i suggest painting it black.

Step 4: Filling in the Middle

Now, this is the section that will hopefully turn out a bit different for all of you, because we dont all want time machines that look the same do we?

Picture 1 — the main part of my time machine is a big lens that i got off the repromaster, i constructed a small tube for this, and added a little circular metal ring ontop also, again paint everything card like black.

Pictures 2 and 3 — Using various parts, i then played around to get a good fit, — most my inside were taken from the inside of hardrives, cd drive, and old floppy drives and a few other bits and bobs.

The key is to use your own creativity, and lots and lots of super glue! (bout 8 tubes for me)

Step 5: More Rubbish

Ok, keep adding the rubbish, a few additions here consist of a applying a piece of leather all around the out side, and various more bits.

As you mite notice there are some bits that have been broken off, again, all part of the creativity.

I added a few ‘bolt’ esque pieces poking out of one side.

Remeber to take your time, and play around, working out what looks best.

Step 6: Painting the Metal.

I suggest getting some special Metal spray paint — the stuff i used was Wickes direct to metal spray paint. Dont use any normal stuff, it will just rub and flake off. If all else fails, Car spray paint does the job!

Picture 1 — Carefully pic any sections you dont want to paint and mask them off — For me this was the lense and the leather, and a few other small bits.

Picture 2 — This is after painting, i removed the masking around the edge, but left the lens covered up to prevent damage later on.

Picture 3 — ok, no to take some of that paint off, i used a combo of power tools, sand paper, and a scapel — basically take off the edges to reveal some of the metal underneath. Take off a little, take off alot, its upto you!

Step 7: Finished, Wait a Minute, Whats That Cool Box?

Well, we cant have a time machine just sat on the side can we?

So we need a secure box to keep it locked up.

Im not going to tell you how to build a wooden box, just how to customize it, (plus i bort the bottom half of the box ready made)

Picture 2 — here we see the top of the box — which has like a sun/lens/thingy. Although i didnt take any pictures, i cut a hole clean out the top.

Step 8: Glue!

Picture 1 — Once you have cut your hole, mix in some of the sawdust with the pva to make a sawdusty glue mush.

Picture 2 — Mask off the lens it self

Picture 3 — Glue around the edge of the lens, and use the excess to hold it in place underneath

Picture 4 — Sand off the excess ontop.

The lens ive used here is again off the repromaster — For this section i printed off a picture of the sun, and taped it to the underneath.

Also for this bit you can use anything, a hunk of metal, a pebble, what ever you think looks cool.

Step 9: Decor

loosely following this instructable — https://www.instructables.com/id/MYO-Antique-Medallion/ i then continued to add card to the box -more pva glue here.

Then you stick tin foil over the card, and trim.

Paint, or colour the foil in with a permanent marker.

And than sand some of it away to give a distressed look.

Finally, i cobbled together some pieces into a make shift key, and then drilled a hole in the front to fit.

Step 10: DONE

There we go, you have your completed time machine.

Enjoy responsibly, and don’t go killing your ancestors. (unless you happen to have built in a parrelex distorter)

Please let me know what you think, and i would love to see any adaptations you make yourselves.

Thanks for reading.

Машина времени своими руками: пошаговые инструкции и советы

Машина времени — это фантастическое изобретение, о котором мечтает многие. В нашей реальности, конечно же, она пока не существует, но мы можем попытаться создать ее своими руками. В этой статье мы расскажем о пошаговых инструкциях и советах для создания машины времени.

Необходимые материалы

Для создания машины времени вам понадобятся следующие материалы:

  • Модуль времени (можно купить в магазине электроники)
  • Карточка Arduino (или аналогичные, например, Raspberry Pi)
  • Провода
  • Электронные компоненты (резисторы, конденсаторы, транзисторы и т.д.)
  • Большой контейнер

Пошаговые инструкции

  1. Собрать модуль времени. Этот модуль является основным компонентом машины времени. Он отвечает за отсчет времени. Чтобы собрать этот модуль, вам нужно свести вместе кристаллы кварцевых генераторов, микросхемы TTL, инверторы и транзисторы. Для сборки используйте готовую схему.

  2. Соедините модуль времени с Arduino. На этом этапе мы соединяем модуль времени с Arduino, используя провода. У вас должно быть понимание того, как проводить монтаж, если вы хотите создать машину времени.

  3. Написать программу. Чтобы создать машину времени, вам нужно написать программу, которая будет работать на вашей платформе микроконтроллера. Если вы используете Arduino, то вам нужно написать программу на языке программирования C++. Функционал программы должен позволять вам управлять модулем времени или записывать данные в память устройства.

  4. Собрать контейнер. Отдельный контейнер нужен, чтобы сохранять все компоненты вашей машины времени на одном месте. Контейнер должен быть достаточно большим, чтобы вместить все компоненты машины времени.

  5. Соберите машину времени. Когда все компоненты будут готовы, вы сможете собрать машину времени. Установите модуль времени и Arduino в контейнер, подключите провода, чтобы все компоненты были соединены между собой. Программируйте машину времени, используя созданную вами программу.

Советы для создания машины времени

  • Перед началом создания машины времени убедитесь, что вы понимаете, как работает каждый компонент вашей машины.

  • Всегда используйте технику безопасности, когда работаете с электроникой. В арсенале у вас также должны быть инструменты для сборки и паяния компонентов.

  • Если вы не можете найти кристалл кварцевого генератора нужного размера, то можете свести несколько меньших кристаллов вместе для получения нужного эффекта.

  • Храните документацию и схемы вашей машины времени в безопасном месте, чтобы в случае необходимости их было проще найти.

  • Не забывайте сохранять все изменения в вашей программе, пока работаете над машиной времени.

Выводы

Создание машины времени — это увлекательный проект, который позволит вам научиться работать с электроникой и программированием. Помните о безопасности, соблюдайте все необходимые технические меры, следуйте пошаговым инструкциям и у вас обязательно получится!

Кто не зачитывался в детстве романом Герберта Уэллса «Машина времени»? Кто не испытывал волнения, когда смотрел одноимённый фильм. Возможности человека управляющего машиной времени безграничны, и в массе своей люди считают такой проект осуществимым в далёком будущем, когда учёные что-то там откроют. Но насколько реальны эти ожидания? Есть ли законы, препятствующие такому путешествию? Есть ли хотя бы предположения о возможном механизме такой машины?
Для того чтобы определить возможность путешествия во времени, необходимо, прежде всего, определиться, что такое время. А вот с этим есть трудность – нет непротиворечивого определения времени. О времени задумывался ещё в 400 году н.э. Блаженный Августин.
«Время — одна из величайших загадок Вселенной. Река времени уносит нас всех без исключения, независимо от нашего желания и даже против воли».
«А как могут быть эти два времени, прошлое и будущее, когда прошлого уже нет, а будущего еще нет? И если бы настоящее всегда оставалось настоящим и не уходило в прошлое, то это было бы уже не время, а вечность».
«Если Господь всезнающ и всемогущ, то связан ли Он течением времени?» «Господь всемогущ и потому не может быть ограничен чем бы то ни было, в том числе и течением времени; следовательно, он должен существовать вне времени».
Многое из этих рассуждений Августина не потеряла свою актуальность в настоящее время. Теорий, объясняющих феномен времени немного. Ньютон считал, что время независимо и неизменно, течёт в раз заданный момент бесконечно в одном направлении. После грандиозного успеха специальной и общей теории относительности стало ясно, что время и пространство неразрывно связанны вместе. Но почему времени уготована роль особого измерения, каков физический смысл этого – до сих пор не ясно. Были разные предположения. Н.А.Козырев считал, что время – это физический процесс и время может оказывать механическое воздействие на приборы. А.И. Вейник считал, что время – это особое хрональное поле, воздействующее на объекты. Орос ди Бартини считал время трёхмерным. Успехи физиков в объяснении особого статуса времени столь редки, что ожидать прорыва в этом направлении в ближайшее время не приходится. Но, несмотря на это рассуждения о возможности построения машины времени постепенно перекочёвывают из романов писателей фантастов в серьёзные статьи физиков теоретиков.

Машина времени Ван Стокума.

В 1937 году В. Дж. Ван Стокум нашел решение уравнений Эйнштейна, которые делали возможным путешествие во времени. Он рассчитал, что если взять бесконечно длинный цилиндр, и раскрутить его до скорости близкой к скорости света, то он бы увлекал материю пространства-времени с собой. (Этот «эффект скручивания» (frame-dragging) так же известен как «захват системы отсчета» и рассчитан для вращающихся черных дыр.)

Любого храбреца, отважившегося пройти мимо цилиндра, засосало бы внутрь с фантастической скоростью. При этом стороннему наблюдателю казалось бы, что тот человек превысил скорость света. Хотя сам В 1937 году эту опасность заметили физики, когда В. Дж. Ван Стокум нашел решение уравнений Эйнштейна, которые делали возможным путешествие во времени. Он рассчитал эффекты от бесконечно длинного вращающегося цилиндра. Хотя физически невозможно построить объект с бесконечными размерами. Сам Ван Стокум тогда так и не понял, что, облетев вокруг цилиндра, по сути, можно вернуться назад во времени, в момент, предшествующий моменту отлета. Чем быстрее вращение цилиндра, тем дальше вы можете унестись назад во времени (при этом единственным ограничением будет то, что вы не смогли бы попасть в момент времени до создания самого цилиндра). Свою теорию Ван Стокум к сожалению не развил до конца, во время Второй Мировой войны он погиб, воюя в Королевских ВВС Нидерландов против Германии.

Машина времени Курта Гёделя.

В 1949 году талантливый математик Курт Гёдель предложил математическую модель машины времени. Он нашёл одно из решений уравнения гравитации Эйнштейна, более сложное с некоторыми параметрами гравитационного поля или искривлением пространства-времени, с которым человечество никогда не сталкивалось. Курт Гёдель, австрийский математик, работал вместе с Альбертом Эйнштейном в Принстонском институте перспективных исследований.
Он предположил, что Вселенная вращается вся целиком. Подобно случаю с вращающимся цилиндром Ван Стокума, все увлекается пространством-временем. Такая естественная машина времени. К примеру, Вселенная нашего размера по Гёделю должна была бы совершать один полный оборот за 70 миллиардов лет, а минимальный радиус для путешествия во времени составлял бы 16 миллиардов световых лет. Однако путешествуя во времени в прошлое, вы должны двигаться со скоростью чуть ниже скорости света.
Эйнштейн не приветствовал появление возможности путешествия во времени в теории, что приводило к логическим парадоксам, подобным парадоксу дедушки. Он писал: «Работа Курта Гёделя, на мой взгляд, представляет собой важный вклад в общую теорию относительности, особенно в анализ концепта времени. Проблема, рассмотренная в работе, беспокоила меня еще во время создания общей теории относительности, и я так и не достиг успеха в ее разрешении… Различие «раньше-позже» стирается при рассмотрении точек Вселенной, отстоящих далеко друг от друга в космологическом смысле, а при учете направления причинных связей возникают те парадоксы, о которых говорит господин Гёдель… Будет интересно разобраться, можно ли отбросить их по причине недостаточного физического обоснования».
В 1968 году академик А.Д. Александров предложил оценить физические условия, при которых реализуется машина времени Курта Гёделя. При этом получалось, что для реализации этого механизма необходима скорость чуть меньше световой, или плотность материи окружающей машину времени порядка 10^28 г/см^3, что согласуется с убеждением самого Гёделя о невозможности построения машины времени не из-за логических противоречий, а только по техническим причинам.

Машина времени Кипа Торна

В 1988 году Кипом Торном была предложена новая модель машины времени. Кип Торн вместе с коллегами, Майклом Моррисом и Ульви Юртсивером, Торн объявил, что машину времени сконструировать возможно при условии, что каким-то образом будут получены странные формы вещества и энергии, такие, как «экзотическое отрицательное вещество» и «отрицательная энергия». Для чего были необходимы столь экзотические формы материи? Для того чтобы вырезать из пространства кротовую нору, которая кратчайшим образом соединяет два участка пространства «А» и»В». Участок В кротовой норы необходимо запустить с околосветовой скоростью, затем затормозить, вернуться назад с такой же скоростью. В портале А время будет идти обычным темпом, в портале В время замедлится. Предлагается нырнуть в портал В, почти мгновенно достигнуть А, и, затем, как можно быстрее домчатся до портала В по внешнему пространству. Это приведёт к появлению временной петли, что эквивалентно машине времени.

Впрочем, помещение портала В в сильное гравитационное поле приведёт в соответствии принципом эквивалентности к аналогичному результату. Впрочем, здесь есть некоторая трудность, которая может иметь решающее значение. Направление стрелы времени в кротовой норе не только не совпадает, но имеет почти противоположное направление по отношению к стреле времени остального пространства. Может быть, это и есть тот запрет, который сведёт на нет попытки построить машину времени.
Дело в том, что Стивен Хоукинг, английский астрофизик, занимающийся проблемами начала и конца Вселенной и чёрными дырами как то поставил перед коллегами задачу: найти закон, препятствующий путешествию во времени. Никто из коллег не смог найти обоснование подобному запрету, названному «защита истории».

Есть и другие принципиальные трудности создания машины времени Кипа Торна. Это создание в большом количестве отрицательной энергии. Небольшое количество так называемой отрицательной энергии можно наблюдать в эксперименте. Теоретическую возможность такого эксперимента голландский учёный Хенрик Казимир доказал в 1933 году, показав, что две незаряженные параллельные металлические пластины могут создавать отрицательную энергию. В 1948 году эта незначительная сила действительно была измерена, что доказало реальную возможность существования отрицательной энергии. Эффект Казимира использует довольно необычное свойство вакуума. Согласно квантовой теории, пустое пространство заполнено «виртуальными частицами», и это возможно благодаря принципу неопределенности Гейзенберга, который допускает, что исконные классические законы могут быть нарушены, если эти нарушения кратковременны. Например, благодаря принципу неопределенности существует некоторая вероятность того, что электрон и позитрон могут возникнуть из ничего, а затем аннигилировать друг друга. Поскольку параллельные пластины находятся очень близко друг к другу, эти виртуальные частицы не могут свободно попасть в пространство между пластинами. Таким образом, поскольку вокруг пластин находится гораздо больше частиц, чем между ними, это создает силу, направленную извне, которая слегка подталкивает пластины друг к другу. Этот эффект был точно измерен в 1996 году Стивеном Ламоро из Национальной лаборатории Лос-Аламос.
Отрицательная энергия содержится и в черной дыре — у ее «горизонта событий». Как доказали Джейкоб Бекенштейн и Стивен Хокинг, черная дыра не является идеально черной, поскольку она пусть медленно, но испускает энергию. Это происходит потому, что принцип неопределенности делает возможным туннелирование излучения сквозь невероятную гравитацию черной дыры. Но поскольку такая черная дыра теряет энергию, со временем «горизонт событий» сужается Обычно, если положительное вещество (например, звезду) бросить в черную дыру, то «горизонт событий» расширяется. Но если мы сбросим в черную дыру отрицательное вещество, то «горизонт событий» сузится. Таким образом, испускание энергии черной дырой создает отрицательную энергию возле «горизонта событий».

Вселенная и машина времени Мизнера.

Мизнер предложил упрощённую модель Вселенной, с которой было бы проще делать математические расчёты. Представим себе некую комнату. Противоположные стенки этой комнаты имеют свойства зеркального отображения и идентичны каждой точке противоположной стенки. Сквозь стены можно проходить, но в этом случае, исчезнув, допустим в левой стенке, мы тут же возникаем справа. Так же точки на передней стене дома идентичны точкам на задней стене, а точки на потолке идентичны точкам пола. Таким образом, идя в любом направлении, вы пройдете сквозь одну из стен и появитесь на противоположной стороне. Теперь представим себе, что стенки медленно сходятся со скоростью Х1. Теперь, пройдя стенку со своей скоростью Х0 мы выйдем из противоположной со скоростью Х0 + Х1. Повторив это ещё раз скорость возрастёт до Х0 + Х1+ Х1. И так каждый раз, пока ваша скорость не достигнет скорости света. Стивен Хокинг тщательно изучил пространство Мизнера. Он обнаружил, что с математической точки зрения правая и левая стены почти идентичны двум устьям-входам портала-червоточины. Таким образом формируется кротовая нора, идентичная той, что необходима для функционирования машины времени. Однако он заметил противоречие. Если вы используете фонарик, то луч света при каждом проходе через стену станет более смещён в голубую часть спектра. Затем сдвиг излучения произойдёт в ультрафиолетовую часть спектра, затем в рентгеновскую, и вплоть до того момента, когда излучение фонарика станет настолько энергетически выраженным, что гравитационное воздействие его само начнёт сдвигать стенки комнаты. Это приведёт к коллапсу комнаты – Вселенной. Таким образом, Стивен Хокинг нашёл главное препятствие для создания машины времени – излучение на входе машины времени будет так многократно усиливаться (re entry), что быстро достигнет уровня энергии, сопоставимой с началом Вселенной, Большом Взрыве. Это излучение просто сожжет любое существо, пытающееся пройти порог машины времени.

Машина времени Готта.

В 1991 году Дж. Ричард Готт из Принстонского института предложил еще одно решение эйнштейновских уравнений, которое допускало путешествия во времени. Это новое решение, без необходимости искать отрицательную энергию, находится рядом с чёрной дырой или разгонятся до световой скорости. Тут надо сказать о космических струнах – экзотических образованиях, которые могли остатся после Большого Взрыва во Вселенной. Диаметр этих образований меньше диаметра ядра атома, длина же может достигать миллионы световых лет. При этом масса их огромна, учитывая их чудовищную плотность. За счёт сверхсильного гравитационного поля эти образования «вырезают» в пространстве «конус». Исследуя уравнения Эйнштейна, он обратил внимание на то, что пространство вокруг космических струн имеет топологию конуса. А это значит, что описав круг вокруг конуса, мы отметим, что длина окружности меньше, чем, если бы конус был бы расправлен на плоскости – нет вырезанного сектора. Описав круг вокруг космической струны, путешественники заметят, что путь их стал короче из-за «вырезанного участка» пространства – времени. Но это не сделает такое путешествие путешествием во времени. Другое дело, если эти космические струны двигаются по отношению друг к другу. Направление времени второй струны будет комбинацией времени и пространственных изменений первой. Теперь, если путешественник движется с первой струной, то взаимодействующая вторая струна сократит как пространство, так и время. И если скорость сближения космических струн сопоставима со скоростью света, то эффекты «сокращения» пространства и времени создаст условия для возникновения петель времени, то есть и машины времени. Готт вспоминает: «Когда я обнаружил это решение, я чрезвычайно взволновался. В решении использовалось только положительное вещество, которое двигалось со скоростью, не превышающей скорость света. Для сравнения: решения, привлекающие порталы, требуют присутствия более экзотического отрицательно-энергетически-плотного вещества (то есть чего-то, что весит меньше, чем ничего)».
Сможет ли высокоразвитая космическая цивилизация обнаружить в космосе подходящие космические струны, двигающиеся навстречу друг другу со скоростью 99,999999996 % от скорости света? Некоторые из теоретиков отрицают саму возможность существования столь экзотической материи, которую ещё никто не наблюдал. Впрочем, даже если они существуют, то их столкновения ещё более редкое событие. Готт на это предлагает воздействовать на космические струны таким образом, чтобы создать петлю, самораспадающуюся из-за своей гравитации. Тогда облетев вокруг распадающейся петли можно попасть в прошлое. Впрочем, он сам признаёт трудности на этом пути: «Коллапсирующая петля из космической струны, достаточно большая для того, чтобы вы смогли облететь вокруг нее и отправиться хотя бы на год назад в прошлое, должна была бы иметь массу-энергию более половины всей галактики».

Машина времени Роналда Малета.

«В своей работе я нашел еще один способ. Оказывается, что по теории Эйнштейна гравитацию может создавать не только вещество, но и свет. Если гравитация может влиять на время, а свет способен создавать гравитацию, то закономерно, что свет также может влиять на время. Так что моя идея заключается в том, что следует использовать свет для того, чтобы манипулировать временем. Моя машина времени выглядела бы как свет, цилиндр постоянно циркулирующего света.
Представим себе, что кофе в этой чашке — это некоторое количество пространства, а ложка — циркулирующий сноп света. Теперь, когда я начинаю перемешивать кофе ложкой, видно, что происходит с кофе. То же самое делает с пространством движущийся по кругу луч света: пространство начинает заворачиваться вокруг него и создает воронку. Но если вращать достаточно быстро, то не только пространство, но и время будет вести себя так. По теории Эйнштейна время и пространство неразрывно связаны между собой, и то, что вы делаете с пространством, неизменно отразиться и на времени. Так что воронка будет не только пространственной, но и временной. Это позволит путешествовать во времени.»
«Чего я не знал, когда приступал к работе над проектом, так это того, что существуют определенные ограничения. Например, если бы я включил устройство сегодня, временная петля начала бы формироваться и я бы оставил ее на 10 лет в таком состоянии, то кто-то смог бы спутешествовать на 10, на 7, на 5 лет назад, в то время, в которое машина была включена. Однако нельзя будет переместиться в более ранние времена, потому что машины времени тогда не существовало. Таким образом, путешествия во времени возможны, но только из будущего, когда устройство будет включено, в тот период и никак не раньше.
Это объясняет, почему мы никогда не видели путешественников во времени из будущего — потому что созданную человеком машину времени в наше время еще не построили и не включили. Иными словами, мне никогда не суждено, например, навестить моего отца, чего бы мне очень хотелось. Однако должен сказать, что так как в теории вопроса я кое-чего достиг, отец мог бы мной гордиться. Моя страсть позволила мне преуспеть, однако она не была всепоглощающей, потому что теперь я знаю, что в дополнение к желанию контролировать время, важно также жить во времени. И даже если путешествия во времени возможны на практике и все мы — хозяева нашей судьбы, у всех у нас есть только настоящее, и важно жить этим настоящим на полную катушку. Это то, чему я научился за время работы над своим проектом.»
http://moris-levran.livejournal.com/6089.html

Машина времени Амоса Ори.

По мнению Амоса Ори из Израильского технологического института в Хайфе, пространство может быть достаточно скручено для создания локального гравитационного поля, которое напоминает пончик определенных размеров. Гравитационное поле образует круги вокруг этого пончика, поэтому пространство и время крепко закручены. Важно отметить, что такое положение дел сводит на нет необходимость какой-либо гипотетической экзотической материи. Хотя как это будет выглядеть в реальном мире описать довольно трудно. Ори говорит, что математика показала, что через равные промежутки времени внутри пончика в вакууме будет образовываться машина времени. Все, что вам нужно — это попасть туда. В теории можно будет отправиться в любой момент времени с тех пор, как была построена машина времени.

Это тоже интересно:

  • Инструкция по созданию бота в telegram
  • Инструкция по созданию локальной сети
  • Инструкция по созданию личного кабинета на портале фбу росавтотранс аис тк
  • Инструкция по созданию карточки товара на вайлдберриз
  • Инструкция по созданию и содержанию зеленых насаждений в городе челябинске

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии