-
Contents
-
Table of Contents
-
Bookmarks
Quick Links
MICROMASTER Vector
MIDIMASTER Vector
© Siemens plc 1999
Operating Instructions
Contents
SAFETY INSTRUCTIONS ……………………………………………………… 4
1. OVERVIEW …………………………………………………………………… 6
5. OPERATING MODES …………………………………………………… 36
8. SPECIFICATIONS………………………………………………………… 67
G85139-H1751-U529-D1
4/8/99
Summary of Contents for Siemens MICROMASTER Vector
Ввод в эксплуатацию с базовой панелью оператора (ВОР) Базовая панель оператора (BOP), поставляемая как опция, дает возможность доступа к параметрам преобразователя и обеспечивает специфическую пользовательскую настройку MICROMASTER 440. BOP может использоваться для конфигурирования боль- шинства преобразователей MICROMASTER 440. Поэтому нет необходимости покупать свою панель BOP для каждо- го преобразователя.
Панель имеет сегментные индикаторы для чтения и записи параметров преобразователя. Панель не имеет возможности собственного хранения информации и параметров после её снятия.
Примечание
• При установке панель не позволяет управлять двигателем (пуск/стоп), если используются установки привода по умолчанию. Для активизации возмож- ности управления необходимо установить параметры Р0700 и Р1000 в «1».
• Панель может сниматься и устанавливаться на преобразователе при вклю-
ченном питании преобразователя.
• Если панель предназначена для управления двигателем (Р0700 = 1), то привод остановится после снятия панели.
Руководство пользователя преобразователей MICROMASTER 440
Клавиши базовой панели управленияКлавиша Функция Назначение
Индикатор состояния
Пуск дви-
гателя
LCD показывает установку или параметр, с которой преобразователь работает в данный момент.
При нажатии клавиши преобразователь пускается. Эта клавиша является по умолчанию пассивной. Клавишу активизируют установкой P0700 =1
Стоп дви-
гателя
Реверс вращения
Толчковый режим
Функции
Доступ к парамет- рам
Увеличить значение
Уменьшить значение
OFF1 — Нажатие клавиши приводит к остановке преоб- разователя по выбранной рампе скорости. По умолча- нию клавиша пассивна, активизируется установкой P0700 = 1.
OFF 2 — Двойное нажатие (или длительное удержание) вызывает свободный выбег электродвигателя до оста- новки.
Нажатие этой клавиши вызывает реверсирование (из- менение направления вращения) электродвигателя. Обратное вращение отображается знаком минус (-) или мигающей десятичной точкой. По умолчанию кла- виша пассивна, активизируется установкой P0700 = 1.
Нажатие этой клавиши при остановленном преобразо- вателе обеспечивает пуск электродвигателя с задан- ной JOG-частотой. После отпускания клавиши преоб- разователь останавливает двигатель. Нажатие клави- ши при работающем преобразователе с электродвига- телем, не приводит ни к каким действиям.
Эта клавиша может использоваться для отображения дополнительной информации.
Клавиша должна нажиматься и удерживаться в тече-
ние 2 секунд. Она указывает при работе следующее:
1. Напряжение звена постоянного тока (Обозначено буквой d) в (V)
2. Выходной ток (A)
3. Выходная частота (Hz)
4. Выходное напряжение (V)
4. Величину (выбранную в P0005)
Повторные нажатия возвращают показания дисплея к текущему значению.
Нажатие этой клавиши обеспечивает доступ к пара-
метрам и настройкам приводаНажатие этой клавиши увеличивает отображаемое значение. Для изменения задания частоты с помощью BOP необходимо установить P1000 = 1
Нажатие этой клавиши уменьшает отображаемое зна- чение. Для изменения задания частоты с помощью BOP нужно установить P1000 = 1.
Изменение параметров с панели ВОР
Нижеследующее описание показывает, как необходимо изменять параметры. Это описание может использоваться как руководство для установки любого параметра с помощью BOP.
Изменение параметра Р0004 — параметр доступа функций.Шаг Отображение
1. Нажмите клавишу для доступа к параметрам
2. Нажимайте
до появления параметра Р0004
3. Нажмите клавишу для доступа к значению
4. Нажимайте
и
до установки значения
5. Нажимайте для возврата и записи значения
6. Могут быть доступны только параметры двигателя
Изменение параметра Р1082 — установка максимальной частоты двигате-
ляШаг Отображение
1. Нажмите клавишу для доступа к параметрам
2. Нажимайте
до появления параметра Р1082
3. Нажмите клавишу для доступа к уровню
4. Нажмите клавишу для доступа к значению
5. Нажимайте
и
до установки значения
6. Нажимайте для возврата и записи значения
7. Нажмите клавишу
для возврата к параметру
8. Нажмите клавишу
для возврата к индикации установленного параметра
Функция кнопки (Fn) базового пульта оператора
Использование кнопки Функции.
Кнопка Функция используется для просмотра информации о параметрах при-
вода. Для их просмотра должны быть выполнены следующие действия:
Из любого параметра, нажмите и удерживайте кнопку функции:
1. Дисплей изменится для индикации напряжения DC звена (обозначается d) .
2. Нажмите кнопку функции снова для индикации выходного тока (A).
3. Нажмите кнопку функции снова для индикации выходной частоты (Hz).
4. Нажмите кнопку функции снова для индикации выходного напряжения (обо-
значается o).
5. Нажмите кнопку функции снова для индикации функции, выбранной для ото- бражения в P0005. (Если параметр P0005 установлен для индикации в одно из вышеупомянутых значений (3,4 или 5), то они не будут индицироваться).
Примечание
Дополнительные нажатия приведут к переключению отображения по кругу. Нажмите и удерживайте кнопку функции в любой точке в цикле для отображе- ния; номер параметра, с которого Вы начнете (например, r0000) и возможность возврата к этому отображению.
Функция прокрутки
Если пользователю требуется изменить значение параметра, то для увеличе- ния или уменьшения значения необходимо воспользоваться клавишами на BOP или
соответственно.
Изменение отдельных цифр в значениях параметра
Для быстрого изменения значения параметра могут быть изменены отдельные отображаемые цифры путем выполняя следующих действий:
Убедитесь, что Вы находитесь на уровне изменения значения параметра
(см. «Изменение параметров с BOP»).
1. Нажмите (функциональную клавишу), которая приведет к миганию крайней правой цифры.
2. Измените значение этой цифры нажатием на
/ .
3. Нажмите (функциональную клавишу) снова, что приведет к миганию следующей цифры.
4. Выполняйте шаги 2 — 4 до тех пор, пока не будет показано требуемое значение.5. Нажмите , чтобы выйти из уровня изменения значения параметра.
Примечание
Функциональная клавиша может быть также использована для подтверждения сбоев.
Функция прокрутки
Если пользователю требуется изменить значение параметра, то для увеличе- ния или уменьшения значения необходимо воспользоваться клавишами на BOP или
соответственно.
Изменение отдельных цифр в значениях параметра
Для быстрого изменения значения параметра могут быть изменены отдельные отображаемые цифры путем выполняя следующих действий:
Убедитесь, что Вы находитесь на уровне изменения значения параметра
(см. «Изменение параметров с BOP»).
1. Нажмите (функциональную клавишу), которая приведет к миганию крайней правой цифры.
2. Измените значение этой цифры нажатием на
/ .
3. Нажмите (функциональную клавишу) снова, что приведет к миганию следующей цифры.
4. Выполняйте шаги 2 — 4 до тех пор, пока не будет показано требуемое значение.5. Нажмите , чтобы выйти из уровня изменения значения параметра.
Примечание
Функциональная клавиша может быть также использована для подтверждения сбоев.
Функция перехода
Из любого параметра (rXXXX или PXXXX) кратким нажатием клавиши Fn, Вы немедленно перейдете на r0000, и, если требуется, затем изменить другой па- раметр. После возврата в r0000, нажатие клавиши Fn возвратит Вас к отправ- ной точке.
1 . ВВОД ПАРАМЕТРОВ ДВИГАТЕЛЯ И ЕГО ИДЕНТИФИКАЦИЯ
Перед началом работы внимательно изучить инструкцию по
эксплуатации преобразователя частоты !!
1 Этап. Сброс на заводские установки.
Если в ходе настройки преобразователя частоты (далее – ПЧ ) были введены ошибочные значения параметров и затруднителен их поиск и исправление , то рекомендуется осуществить сброс всех параметров на заводские настройки и повторить цикл параметрирования снова.
Для этой процедуры используются след. параметры:
- Р0003 =4 — уровень доступа к параметрам (экспертный уровень). При этом открывается доступ ко всем параметрам ПЧ
- Р0010=30 — разрешение на заводские настройки
- Р0970=1 — старт процесса сброса
2 Этап. Введение параметров двигателя. (Быстрый ввод в эксплуатацию)
Р0003 = 4 — уровень доступа к параметрам
Р0004 = 0 — фильтр параметров (все параметры)
Р0010 = 1 — быстрое параметрирование (начало процесса тестирования двигателя)
Р0100 = 0
Р0205 = 0 — работа с постоянным моментом
Р0300 = 1 — асинхронный двигатель, (АД)
Р0304 = 380 — номинальное напряжение двигателя , В
Р0305 = … — номинальный ток двигателя, А
Р0307 = … — номинальная мощность двигателя, кВт
Р0308 = … — cosφ двигателя
Р0310 = 50 , номинальная частота, Гц
Р0311 = … — Номинальная асинхронная скорость двигателя, об./мин ( с шильдика двигателя)
Р0320 = 0 — ток намагничивания (определяется автоматически в ходе тестирования)
Р0335 = 0 — самоохлаждение двигателя
Р0500 = 0 — тип нагрузки (постоянный момент)
Р0640 =170 — перегрузка двигателя по току (рекомендуется 150 -180), %
Р0700 =1 — выбор источника управляющих сигналов (1-пульт управления, 2- внешними
сигналами. После тестирования выставить 2)
Р1000 =3 — выбор источников задания частоты («3» — фиксированные частоты)
Р1080 =0 — минимальная частота, Гц
Р1082 =50 — максимальная частота, Гц
Р1120 = 2.1 — время разгона, с
Р1121 = 1.2 — время торможения, с
Р1135 = 0.4 — время аварийного останова, с
Р1300 = 20 — выбор режима управления — векторное управление без обр. связи
Р1500 = 0 — выбор источника задания момента
Р1910 = 1 — определение параметров двигателя ( при этом появляется код предупре-
ждения А0541 , что при последующей подаче команды «Пуск» начнется
измерение параметров двигателя
P1960 = 0 — оптимизация контроля скорости
Р3900 = 3 — Завершение быстрого ввода с расчетом двигателя (появится сигнал занятости
расчетами)
-Подождать , пока не закончится предварительный расчет
-Нажать кнопку Пуск (или подать внешнюю команду на пуск). При этом должны быть слышны характерные звуки в тестируемом двигателе.
-Подождать , пока закончится тестирование двигателя . По окончании тестирования дисплей будет отображать последний параметр.
-Приступить к редактированию остальных параметров.
Внимание : 1. Во время тестирования двигатель должен быть подключен к выходу частотного преобразователя. Если двигатель подключен через дополнительный контактор, то на время тестирования контактор нужно включить принудительно (или на время его зашунтировать).
2. На время тестирования отключить шкаф управления или цепи управления тормозом лебедки.
3. На время тестирования временно выставить : Р700 =1 (управление с пульта).
После тестирования выставить в «2» (терминал)!
4. Вернуть все временные изменения в цепях управления в исходное состояние
5. Переход к разрядам чисел при редактировании параметров осуществляется нажатием на клавишу « Fn » на пульте управления.
Список основных параметров для редактирования
Р003 =3 — уровень доступа к параметрам
Р004 =0 — фильтр параметров (все параметры)
Р100=0 — европейская система единиц (кВт, 50 Гц)
Р205=0 — режим использования ПЧ ( постоянный момент)
Р290=1 — реакция ПЧ на перегрузки (выход в аварию -отключение)
Р295=20 — задержка отключения вентилятора охлаждения
Р300=1 — тип двигателя (асинхронный)
Р304=380 (ном. напряжение двигателя )
Р305=…. (ном. ток двигателя, А)
Р306=….. (ном. мощность двигателя, кВт)
Р308=….. ( cos двигателя )
Р310=50 ( ном. частота двигателя )
Р311=…. (Номинальная асинхронная скорость двигателя, об./мин)
Р335=0 — охлаждение двигателя (самоохлаждение)
Р500=0 — область применения ПЧ (привод с постоянным моментом)
Р610=2 — реакция на перегрев двигателя (предупреждение и выход в аварию – F0011)
Р640=170 — допустимая перегрузка двигателя по току (рекомендуется 150 -180), %
Р700=2 — выбор источника управляющих сигналов — терминал (при тестировании двигателя
временно выставить =1)
Р701=1 – функция входа №1 (направление вверх)
Р702=2 – функция входа №2 (направление вниз)
Р703=15 – функция входа №3 (фиксированная частота большой скорости)
Р704=99 – функция входа №4 (BICO-функции — расширенные функции с возможностью перехода
на 2-й набор времени разгона-торможения и фиксированная частота малой скорости)
Р705=0 – вход не используется
Р706=4 функция быстрого аварийного останова. На этот вход подано напряжение +24 в, когда нет обрыва цепи безопасности или нет условий для аварийного останова привода. При возникновении аварийной ситуации сигнал должен немедленно сниматься, тем самым формируя аварийный останов привода.
Р707=0 – вход не используется
Р708=0 – вход не используется
Р724=2 – время фильтрации входных сигналов (8.2 мс)
Р731=52:3 – функция выхода №1 (готовность привода и отсутствие аварий)
Р732=2811:0 – функция выхода №2 (синхронизация работы тормоза – выход внутреннего
контроллера — анализатора частоты и тока)
Р1000=3 – источник задания частот (фиксированные частоты)
Р1001=0 — задание частоты по входу №1 – нет
Р1002=0 — задание частоты по входу №2 – нет
Р1003=47 (задание частоты по входу №3 -частота для большой скорости . )
Р1004=9 (задание частоты по входу №4 -частота для малой скорости . )
Р1005…. по Р1015=0
Р1023=722.3 (BICO-задание частоты по входу №3)
Р1031=0 (сохранение частоты в панели управления –нет)
Р1060= 2.1 (второе время разгона),сек
Р1061=1.3 (второе время торможения — при переходе на малую скорость),сек
Р1080=0 – мин. частота
Р1082=50 –максимальная частота
Р1120= 2.1 (время разгона)
Р1121=1,2 (время торможения -на шунте ТО)
Р1124=722.3 (активация 2-го времени разгона-торможения по входу №3)
Р11300,5 (1-й участок округления при разгоне), с
Р11310,5 (2-й участок округления при разгоне), с
Р11320.5 (1-й участок округления при торможении), с
Р11330.4 (2-й участок округления при торможении), с
Р1134=1 (округление при обрыве задания –нет)
Р1135=0.4 (время торможения при аварийном останове),с
Р1210=1 (автоматический перезапуск –нет)
Р1215=1 (активация удержания током)
Р1216=0.3 (время удержания перед стартом),с
Р1217=1 (время удержания перед наложением тормоза),с
Р1237=5 (уровень динамического торможения -100%)
Р1240=0 (дезактивация контроллера звена постоянного тока)
Р1300=20 (векторный режим работы)
Р1470=7 ( пропорциональный коэффициент регулятора скорости – рекомендованные значения
лежат в области 5.5 — 8 . С увеличением этого коэффициента возрастает скорость реакции
привода на неоднородности момента на валу двигателя, но при этом могут возникать
возбуждения привода в определенных ситуациях. Оптимальное значение коэффициента
определяется экспериментально-по удовлетворительной работе привода в динамических
процессах)
Р1472=176 ( интегральный коэффициент регулятора скорости- рекомендованные значения лежат в
области 80 – 300. оказывает сглаживающее воздействие на регулирование скорости.
Обычно с увеличением пропорциональной части уменьшают интегральную часть.)
Р1570=110 ( коэффициент потокосцепления)
Р1610=200 (увеличение момента на сверхнизких частотах)
Р1611=150 (увеличение момента при разгоне)
Р1755=3 (частота перехода управления на векторную модель)
Р1756=50 (гистерезис частоты перехода на векторную модель)
Р1758=100 (минимальное время перехода с токовой модели на векторную модель)
Р1800=6 ( ШИМ-частота работы транзисторных ключей ПЧ)
P2106=2829:0 (источник формирования искусственной аварии-выход логического элемента
NOT1)
Р2150=0 (гистерезис контроля частоты)
Р2155 =0.03 (контрольная частота №1)
Р2156=0 (задержка после определения контрольной частоты)
Р2157=0.03 (контрольная частота №2)
Р2158=0 (задержка после определения контрольной частоты)
Р2159=0.03 (контрольная частота №3)
Р2160=0 (задержка после определения контрольной частоты)
P2170=5 (контрольный уровень тока, в % от номинального тока двигателя)
Р2180=100 (задержка выдачи кода аварии при потере нагрузки, мс)
Р2800=1 (активация встроенного логического контроллера)
Р2801 in 000 =1 активация логического элемента AND1
in 009 =1 активация логического элемента NOT1
P2810 in 000=53:3 — вход логического элемента AND1(контрольный уровень тока)
in 001=2198:1 — вход логического элемента AND1 (контрольная частота №2)
P2828=2197:B (формирование аварии при потере нагрузки-выход логического элемента NOT1)
Примечание: Все значения частот и времени разгона-торможения справедливы только для расстояний между шунтами согласно паспортным данным и длине шунта точной остановки -20 см.
MIDIMASTER Vector
Operating Instructions
© Siemens plc 1999
Contents
SAFETY INSTRUCTIONS………………………………………4
1. OVERVIEW …………………………………………………….6
2. INSTALLATION — MICROMASTER Vector ………12
3. INSTALLATION — MIDIMASTER Vector…………..25
4. CONTROLS AND BASIC OPERATION……………32
5. OPERATING MODES…………………………………….36
6. SYSTEM PARAMETERS ……………………………….41
7. FAULT AND WARNING CODES……………………..65
8. SPECIFICATIONS …………………………………………67
9. SUPPLEMENTARY INFORMATION………………..73
G85139-H1751-U529-D1
4/8/99
4
4.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
5
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.5
2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
Contents
1
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
Overview
Installation — General Notes
Wiring Guidelines to Minimise the Effects of EMI
Electrical Installation — General Notes
Operation with Unearthed (IT) Supplies
Operation with Residual Current Device (RCD)
Installation After a Period of Storage
Operation with Long Cables
Installation – MICROMASTER Vector
Mechanical Installation
Electrical Installation
Power and Motor Connections — Frame Size A
Power and Motor Connections — Frame Size B
Power and Motor Connections — Frame Size C
Control Connections
External Motor Thermal Overload Protection
Block Diagram – MICROMASTER Vector
Installation – MIDIMASTER Vector
Mechanical Installation
Electrical Installation
Power and Motor Connections
Control Connections
Motor Overload Protection
Block Diagram – MIDIMASTER Vector
Controls and Basic Operation
Controls
DIP Selector Switches
Basic Operation
General
Initial Testing
Basic Operation – 10 Step Guide
Operating Modes
Digital Control
Analogue Control
Motor Control Modes
Linear Voltage to Frequency (V/f) (P077= 0 or 2)
Flux Current Control (FCC) Operation (P077 = 1)
37
37
Sensorless Vector Control (SVC) Operation (P077 = 3) 37
Stopping the Motor 38
If the Motor Does Not Start Up 38
36
36
36
36
34
34
35
32
32
33
34
30
30
31
25
25
28
29
12
12
15
17
18
20
22
23
24
10
10
10
11
6
7
8
10
G85139-H1751-U529-D1
4/8/99 2
© Siemens plc 1999
7
7.1
7.2
8
9
9.1
9.2
9.3
9.4
9.5
5.6
5.7
5.7.1
5.7.2
5.7.3
6
Local and Remote Control
Closed Loop Control
General Description
Hardware Set-up
Parameter Settings
System Parameters
Fault and Warning Codes
Fault Codes
Warning Codes
Specifications
Supplementary Information
Application Example
USS Status Codes
Electro-Magnetic Compatibility (EMC)
Environmental Aspects
User’s Parameter Settings
65
65
66
67
73
73
73
74
77
78
38
39
39
40
40
41
© Siemens plc 1999
3
G85139-H1751-U529-D1
4/8/99
Safety Instructions
Before installing and putting this equipment into operation, please read these safety instructions and warnings carefully and all the warning signs attached to the equipment. Make sure that the warning labels are kept in a legible condition and replace missing or damaged labels.
WARNING
This equipment contains dangerous voltages and controls dangerous rotating mechanical parts. Loss of life, severe personal injury or property damage can result if the instructions contained in this manual are not followed.
Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual.
The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
•
The MICROMASTER and MIDIMASTER Vector units operate at high voltages.
•
Only permanently-wired input power connections are allowed. This equipment must be grounded
(IEC 536 Class 1, NEC and other applicable standards).
•
If a Residual Current-operated protective Device
(RCD) is to be used it must be an RCD type B.
•
The dc-link capacitor remains charged to dangerous voltages even when the power is removed. For this reason it is not permissible to open the equipment until five minutes after the power has been turned off. When handling the open equipment it should be noted that live parts are exposed. Do not touch these live parts.
•
Machines with a three phase power supply, fitted with EMC filters, must not be connected to a supply via an ELCB (Earth Leakage Circuit-
Breaker — see DIN VDE 0160, section 6.5).
•
The following terminals can carry dangerous voltages even if the inverter is inoperative:
— the power supply terminals L/L1, N/L2 and L3
(MMV) — L1, L2, and L3 (MDV).
-the motor terminals U, V, W.
-the braking resistor terminals B+/DC+ and B-
(MMV).
-the braking unit terminals DC+ and DC-
(MDV).
•
Only qualified personnel may connect, start the system up and repair faults. These personnel must be thoroughly acquainted with all the warnings and operating procedures contained in this manual.
•
Certain parameter settings may cause the inverter to restart automatically after an input power failure.
•
This equipment is capable of providing internal motor overload protection in accordance with
UL508C section 42. Refer to P074. Motor overload protection can also be provided by using an external PTC.
This equipment is suitable for use in a circuit capable of delivering not more than 100,000 symmetrical amperes (rms), for a maximum voltage of 230/460V* when protected by a time delay fuse*.
*As detailed in section 8.
•
This equipment must not be used as an
‘emergency stop’ mechanism (see EN 60204,
9.2.5.4).
CAUTION
•
Children and the general public must be prevented from accessing or approaching the equipment!
•
This equipment must only be used for the purpose specified by the manufacturer. Unauthorised modifications and the use of spare parts and accessories that are not sold or recommended by the manufacturer of the equipment can cause fires, electric shocks and injuries.
•
Keep these operating instructions within easy reach and give them to all users!
European Low Voltage Directive
The MICROMASTER Vector and MIDIMASTER Vector product range complies with the requirements of the Low Voltage
Directive 73/23/EEC as amended by Directive 93/68/EEC. The units are certified for compliance with the following standards:
EN 60146-1-1 Semiconductor converters — General requirements and line commutated converters
EN 60204-1 Safety of machinery — Electrical equipment of machines
European Machinery Directive
The MICROMASTER Vector and MIDIMASTER Vector inverter series do not fall under the scope of the Machinery Directive.
However, the products have been fully evaluated for compliance with the essential Health & Safety requirements of the directive when used in a typical machine application. A Declaration of
Incorporation is available on request.
European EMC Directive
When installed according to the recommendations described in this manual, the MICROMASTER Vector and MIDIMASTER
Vector fulfil all requirements of the EMC Directive as defined by the EMC Product Standard for Power Drive Systems
EN61800-3.
Underwriters Laboratories
ISO 9001
UL and CUL listed power conversion equipment 5B33 for use in a pollution degree 2 environment
Siemens plc operates a quality management system, which complies with the requirements of ISO 9001.
G85139-H1751-U529-D1
4/8/99
© Siemens plc 1999
4
IMPORTANT
WARNING
In order to ensure correct and safe operation, it is vital the following instructions are strictly adhered to:
•
Operation of a motor with a higher nominal power than the inverter or a nominal power less than half that of the inverter is not allowed. The inverter must only be operated when the nominal current in P083 exactly matches the motor rating plate nominal current.
•
The motor data parameters must be accurately entered (P080-P085) and an autocalibration performed (P088=1) before the motor is started. Unstable/unpredictable motor operation (eg. reverse rotation) may result if this is not done. If this instability occurs, the mains supply to the converter must be disconnected.
When using the analogue input, the DIP switches must be correctly set and the analogue input type selected (P023) before enabling the analogue input with P006. If this is not done, the motor may start inadvertently.
© Siemens plc 1999
5
G85139-H1751-U529-D1
4/8/99
English
1. OVERVIEW
1. OVERVIEW
The MICROMASTER Vector (MMV) and MIDIMASTER Vector (MDV) are a standard range of inverters with sensorless vector capability suitable for controlling the speed of 3 phase motors. Various models are available, ranging from the compact 120 W MICROMASTER Vector up to the 75 kW MIDIMASTER Vector.
Sensorless vector control allows the inverter to calculate the changes required in output current and frequency in order to maintain the desired motor speed across a wide range of load conditions.
For additional product information such as application examples, part numbers, operation with long cables etc, please refer to catalog DA64 or to http://www.con.siemens.co.uk
Features:
•
Easy to install, program and commission.
•
Overload capability 200% for 3s followed by 150% for 60s.
•
High starting torque and accurate motor speed regulation by vector control.
•
Optional integrated RFI filter on single-phase input inverters MMV12 — MMV 300, and three phase input inverters MMV220/3 to MMD750/3
•
Fast Current Limit (FCL) for reliable trip-free operation.
•
0 to 50
°
C temperature range (0 to 40
°
C for MIDIMASTER Vector)
•
Closed loop process control using a standard Proportional, Integral, Derivative (PID) control loop function.
15 V, 50 mA supply provided for feedback transducer.
•
Remote control capability via RS485 serial link using the USS protocol with the ability to control up to 31 inverters via the USS protocol.
•
Factory default parameter settings pre-programmed for European, Asian and North American requirements.
•
Output frequency (and hence motor speed) can be controlled by:
(1) Frequency setpoint using the keypad.
(2) High resolution analogue setpoint (voltage or current input).
(3) External potentiometer to control motor speed.
(4) 8 fixed frequencies via binary inputs.
(5) Motorised potentiometer function.
(6) Serial interface.
•
Built-in DC injection brake with special COMPOUND BRAKING.
•
Built-in brake chopper for external resistor (MMV).
•
Acceleration/deceleration times with programmable smoothing.
•
Two fully-programmable relay outputs (13 functions).
•
Fully-programmable analogue outputs (1 for MMV, 2 for MDV).
•
External Options connector for optional multi-language Clear Text Display (OPM2), optional PROFIBUS-
DP module or CANbus module
•
Dual motor-parameter sets available if Clear Text Display (OPM2) fitted.
•
Automatic recognition of 2,4,6 or 8-pole motors by software.
•
Integral software controlled cooling fan.
•
Side-by-side mounting without additional clearance.
•
Optional protection to IP56 (NEMA 4/12) for MIDIMASTER Vector inverters.
G85139-H1751-U529-D1
4/8/99 6
© Siemens plc 1999
1. OVERVIEW
1.1 Installation — General notes
Environmental Requirements
Hazard
Temperature
Notes
Min. Operating = 0
°
C
Max. Operating = 50
°
C (MMV)
Max. Operating = 40
°
C (MDV)
Altitude
If the Inverter is to be installed at an altitude >1000m, derating will be required.(Refer to DA64 Catalogue)
Shock
Do not drop the inverter or expose to sudden shock.
Vibration
Do not install the inverter in an area where it is likely to be exposed to constant vibration.
Electro-
Magnetic
Radiation
Do not install the inverter near sources of electromagnetic radiation.
Atmospheric
Pollution
Water
Do not install the inverter in an environment, which contains atmospheric pollutants such as dust, corrosive gases, etc.
Take care to site the inverter away from potential water hazards. e.g. Do not install the inverter beneath pipes that are subject to condensation. Avoid installing the inverter where excessive humidity and condensation may occur.
Overheating
Ensure that the inverter’s air vents are not obstructed, including the air vent at the front of the unit, which should be at least 15mm from any obstruction.
Additional ventilation may be required for horizontal mounting.
Make sure that there is an adequate air-flow through the cabinet, as follows:
1. Using the formula below, calculate the air-flow required:
Air-flow (m3 / hr) = (Dissipated Watts /
∆
T) x 3.1
2. If necessary, install cabinet cooling fan(s).
Note:
Dissipation (Watts) = 3-5% of inverter rating.
∆
T = Allowable temperature rise within cabinet in °C.
3.1 = Specific heat of air at sea level.
Ideal Installation
Figure: 1.1
100 mm
160 mm
English
Note: The Plastic Material of the case can be degraded by oil or grease. Care should be taken to ensure that the mounting surface and fixings are thoroughly degreased before use.
© Siemens plc 1999
7
G85139-H1751-U529-D1
4/8/99
English
1.2 Wiring Guidelines to Minimise the Effects of EMI
1. OVERVIEW
The inverters are designed to operate in an industrial environment where a high level of Electro-Magnetic
Interference (EMI) can be expected. Usually, good installation practices will ensure safe and trouble-free operation. If problems are encountered, the following guidelines may prove useful. In particular, grounding of the system at the inverter, as described below, may prove effective. Figures 1.2.1-1.2.3 illustrate how an RFI suppression filter should be installed and connected to the MICROMASTER Vector.
(1) Ensure that all equipment in the cubicle is well earthed using short, thick earthing cable connected to a common star point or busbar. It is particularly important that any control equipment that is connected to the inverter (such as a PLC) is connected to the same earth or star point as the inverter via a short, thick link. Flat conductors (e.g. braids or metal brackets) are preferred as they have lower impedance at high frequencies.
The return earth from motors controlled by the inverter should be connected directly to the earth connection (PE) on the associated inverter.
(2)
(3)
(4)
(5)
(6)
(7)
(8)
On the MIDIMASTER Vector, use saw-tooth washers when mounting the inverter and ensure that a good electrical connection is made between the heatsink and the panel, removing paint if necessary.
Wherever possible, use screened leads for connections to the control circuitry. Terminate the ends of the cable neatly, ensuring that unscreened wires are as short as possible. Use cable glands whenever possible.
Separate the control cables from the power connections as much as possible, using separate trunking, etc. If control and power cables cross, arrange the cables so that they cross at 90° if possible.
Ensure that contactors in the cubicle are suppressed, either with R-C suppressors for AC contactors or ‘flywheel’ diodes for DC contactors, fitted to the coils. Varistor suppressors are also effective. This is particularly important if the contactors are controlled from the relay on the inverter.
Use screened or armoured cables for the motor connections and ground the screen at both ends via the cable glands.
If the drive is to be operated in an Electro-magnetic noise-sensitive environment, the RFI filter should be used to reduce the conducted and radiated interference from the inverter. For optimum performance, there should be a good conductive bond between filter and metal mounting plate.
For Frame Size A units (Fig.1.2.1), the flat earth braid strap, supplied with the unit, should be fitted to minimise emissions.
G85139-H1751-U529-D1
4/8/99 8
© Siemens plc 1999
1. OVERVIEW
CONTROL
CABLE
MAINS POWER INPUT
FOOTPRINT FILTER
METAL BACK-PLATE
EARTH BRAID
Fix motor and control cable screens securely to metal back plate using suitable clips.
EARTH BRAID
Figure 1.2.1: Wiring guidelines to minimise effects of EMI — MICROMASTER Vector Frame Size A
CONTROL
CABLE
English
MAINS POWER INPUT
FOOTPRINT FILTER
METAL BACK-PLATE
CONTROL
CABLE
Fix motor and control cable screen securely to metal back plate using suitable clips.
Figure 1.2.2: Wiring guidelines to minimise effects of EMI — MICROMASTER Vector Frame Size B
© Siemens plc 1999
9
G85139-H1751-U529-D1
4/8/99
English 1. OVERVIEW
MAINS POWER INPUT
FOOTPRINT FILTER
METAL BACK-PLATE
Fix motor and control cable screen securely to metal back plate using suitable clips.
Figure 1.2.3: Wiring guidelines to minimise effects of EMI MICROMASTER Vector Frame Size C
On no account must safety regulations be compromised when installing inverters!
1.3 Electrical Installation — General Notes
1.3.1 Operation with Unearthed (IT) Supplies
The MICROMASTER Vector will operate from unearthed supplies and will continue to operate if an input phase is shorted to earth. If an output phase is shorted to earth, the MICROMASTER Vector will trip and indicate F002.
Note: MIDIMASTER Vector inverters will operate from unearthed supplies provided that the switching frequency is set to 2kHz (P076 = 6 or 7).
1.3.2 Operation with Residual Current Device (RCD)
The MICROMASTER and MIDIMASTER Vector inverters will operate without nuisance tripping with an RCD
(also called ELCBs or RCCBs) fitted to the input providing:
•
A type B RCD is used.
•
The trip limit of the RCD is 300mA.
•
The neutral of the supply is earthed.
•
Only one inverter is supplied from each RCD.
•
The output cables are less than 50m (screened ) or 100m (unscreened).
1.3.3 Installation after a Period of Storage
It is necessary to reform the capacitors in the inverter if the unit has been stored for a prolonged period:
•
Period of storage 1 year old or less:
No reforming is required.
•
1 — 2 years old:
Apply power to the inverter one hour before giving the run command (preparation time 1 hour).
•
2 — 3 years old:
G85139-H1751-U529-D1
4/8/99 10
© Siemens plc 1999
1. OVERVIEW English
Use a variable AC supply. Apply 25% of input voltage for 30 minutes. Increase volts to 50% for a further
30 minutes. Increase volts to 75% for further 30 minutes. Increase volts to 100% for a further 30 minutes.
Now ready for run signal (preparation time 2 hours).
•
3 years and over:
As with 2 — 3 years, but the steps should be 2 hours (preparation time 8 hours).
1.3.4 Operation with Long Cables
Motor cable lengths vary depending on type of cable, power rating and voltage rating — and in some cases can be as long as 200m without the need for additional chokes. Refer to DA64 catalogue for further details.
In any case, all inverters will operate at full specification with cable lengths up to 25m for screened cable or
50m for unscreened cables.
© Siemens plc 1999
11
G85139-H1751-U529-D1
4/8/99
English 2. INSTALLATION – MICROMASTER Vector
2. INSTALLATION — MICROMASTER Vector
2.1 Mechanical Installation
WARNING
THIS EQUIPMENT MUST BE EARTHED.
To guarantee safe operation of the equipment it must be installed and commissioned properly by qualified personnel in compliance with the warnings laid down in these operating instructions.
Take particular note of general and regional installation safety regulations regarding work on dangerous voltage installations (e.g. VDE), as well as the relevant regulations regarding the correct use of tools and personal protective gear.
The mains input and motor terminals carry dangerous voltages even if the inverter is not operating.
Use insulated screwdrivers on these terminal blocks.
G85139-H1751-U529-D1
4/8/99 12
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector English
MICROMASTER Vector inverters must be secured to a suitable vertical surface by bolts, washers and nuts.
Frame size A units need two bolts or can be DIN rail mounted. Frame size B and C units require four bolts.
W
A
H
H1
W
D
B
H1
H
D
W
C
H1
H
Figure 2.1.1: MICROMASTER Vector — Frame Size A, B and C
© Siemens plc 1999
13
D
G85139-H1751-U529-D1
4/8/99
English 2. INSTALLATION – MICROMASTER Vector
W1
F
H1
Depth D
H H2
DIN Rail
H2
H1
Depth D
H
W
W
∅
∅
∅ = 4.5 mm
2 bolts M4
2 nuts M4
2 washers M4
Tightening Torque
(with washers fitted)
2.5 Nm Frame size A and B
3.0 Nm Frame size C
∅
∅
= 4.8 mm (B)
= 5.6 mm (C)
Frame size B:
4 bolts M4
4 nuts M4
4 washers M4
Frame size C:
4 bolts M5
4 nuts M5
4 washers M5
Frame Size A Frame Sizes B and C
Model
MMVxxx
1 AC 230V
Class A
Filter
MMVxxx/2
1/3 AC
230V
Without
Filter
MMVxxx/3
3 AC 380 —
500V
Without
Filter
Frame Sizes
(all measurements in mm)
MMV12
MMV25
MMV37
MMV55
MMV75
MMV110
MMV150
MMV220
MMV300
MMV400
MMV550
MMV750
A
A
A
A
A
B
B
C
C
—
—
—
A
A
A
A
A
B
B
C
C
C
—
—
—
—
A
A
A
A
A
B*
B*
C*
C*
C*
H W D H1 H2 W1 F
A = 147 x 73 x 141 160 175 — 55
B = 184 x 149 x 172 174 184 138 —
C = 215 x 185 x 195 204 232 174 —
* These units also available with built in filter e.g. MMV220/3F
Figure 2.1.2: Mechanical Installation Diagram — MICROMASTER Vector
G85139-H1751-U529-D1
4/8/99 14
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector
2.2 Electrical Installation
Read the Wiring Guidelines given in section 1.2 before commencing installation.
The electrical connectors on the MICROMASTER Vector are shown in Figure 2.2.1.
Asynchronous and synchronous motors can be connected to the
MICROMASTER Vector inverters either individually or in parallel.
Note:If a synchronous motor is connected to the inverter, the motor current may be two and a half to three times greater than that expected, so, the inverter must be de-rated accordingly. Also, the inverter cannot be used in vector mode when connected to a synchronous motor (P077= 0 or 2).
Terminal 23
Terminal 1
Terminal 12
PE L/L1 N/L2 L3
PE U V W
Brake Terminals
(rear)
English
DIP Switches
Terminal 11
Terminal 22
Mains Input Power
Terminals
Motor Terminals
L3
L2
L1
N
FUSES
SINGLE PHASE
CONTACTOR
PE
FILTER (Class B only) MICROMASTER Vector
PE
L
N
U
V
PE
W
L3
L2
L1
FUSES
CONTACTOR
TYPICAL INSTALLATION
FILTER
PE
PE
MICROMASTER Vector
L3
L2
L1
PE
U
V
W
THREE PHASE
Figure 2.2.1: MICROMASTER Vector Connectors — Frame Size A
© Siemens plc 1999
15
U
V
W
MOTOR
U
V
W
MOTOR
G85139-H1751-U529-D1
4/8/99
English 2. INSTALLATION – MICROMASTER Vector
WARNING
Make sure that the input power supply is isolated before making or changing any connections to the unit.
Ensure that the motor is configured for the correct supply voltage. Single/three phase 230 V units must not be connected to a 400 V three phase supply.
When synchronous machines are connected or when coupling several motors in parallel, the inverter must be operated with voltage/frequency control characteristic (P077= 0 or 2) and slip compensation must be disabled (P071 = 0).
Note: This equipment is suitable for use in a circuit capable of delivering not more than 100,000 symmetrical amperes (rms), for a maximum voltage of 230 / 460 V * when protected by a time delay fuse *.
* As detailed in section 8.
•
Frame size A: the power terminals are directly available beneath the inverter. For the control terminals lift the flap in the front cover of the inverter. (As shown in Figure 2.2.1)
•
Frame size B: use a small bladed screwdriver (as shown in Figure 2.2.2) to release the terminal cover of the inverter and allow it to swing down to hang beneath the inverter.
•
Frame size C: use a small bladed screwdriver (as shown in Figure 2.2.3) to release the gland plate and the fan housing; allow them both to swing down to hang beneath the inverter.
Connect the cables to the power and control terminals in accordance with the information supplied in this section. Ensure that the leads are connected correctly and the equipment is properly earthed.
CAUTION
The control, power supply and motor leads must be laid separately. They must not be fed through the same cable conduit/trunking.
High voltage insulation test equipment must not be used on cables connected to the inverter.
Use screened cable for the control cable, Class 1 60/75 o
C copper wire only. Tightening torque for the field wiring terminals is 1.1 Nm.
A small bladed screwdriver, max. 3.5 mm will be required to operate the control terminal WAGO cable clamp connectors as shown in Figure 2.2.4.
To tighten up the power and motor terminal screws use a 4 — 5 mm cross-tip screwdriver.
When all power and control connections are complete:
•
Frame size A : lower the flap in the front cover of the inverter.
•
Frame size B : lift and secure the terminal cover to the inverter.
•
Frame size C : lift and secure the gland plate and the fan housing to the inverter.
G85139-H1751-U529-D1
4/8/99 16
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector
2.2.1 Power and Motor Connections — MICROMASTER Vector — Frame Size A
English
1. Ensure that the power source supplies the correct voltage and is designed for the necessary current (see
section . Ensure that the appropriate circuit breakers with the specified current rating are connected between the power supply and inverter (see section
.
2. Fit the earth braid strap, supplied with the unit, between the PE faston connector and the mounting surface. Ensure there is a good electrical connection between the mounting surface and the earth strap.
3. Connect the power input directly to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) as shown in Figure 2.2.1, using a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.
4. Use a 4-core screened cable to connect the motor. The cable is connected to the motor terminals U, V, W and the earth (PE) shown in Figure 2.2.1.
Note: For operation with cables longer than 25m see section 1.3.4
5. If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and B- terminals at the rear of the inverter.
Note: These connections have to be made with the inverter dismounted from the mounting surface. Care must be taken routing the leads through the moulded clips to prevent trapping and chafing when the unit is mounted and secured to the selected surface. Connect the control leads as shown in Figures
2.2.4 and 2.2.6.
© Siemens plc 1999
17
G85139-H1751-U529-D1
4/8/99
English 2. INSTALLATION – MICROMASTER Vector
2.2.2 Power and Motor Connections — MICROMASTER Vector — Frame Size B
The terminal arrangement for frame size B is similar to frame size A
Refer to Figures 2.2.1 and 2.2.2 and proceed as follows:
B
A
1. Insert the blade of a small screwdriver into slot A in the front of the inverter and press in the direction of the arrow.
At the same time, press down on tab B at the side of the access panel.
Power Connections Access Diagram — Frame Size B
2. This will release the access panel, which will then swing down on its rear-mounted hinges.
Note: The access panel can be removed from the inverter when at an angle of approximately 30° to the horizontal. If allowed to swing lower, the panel will remain attached to the inverter.
Removal of Terminal Cover- Frame Size B
F
J
G
H
D
E
3. Remove the earthing screw C from the gland plate.
4. Press both release catches D and E to release the gland plate and then remove the metal gland plate from the inverter.
C
F: Control cable input
G: Mains cable input
H: Motor cable output
J: Braking resistor/ DC link cable input
Figure 2.2.2 : Power and Motor Connectors MICROMASTER Vector Frame Size B
G85139-H1751-U529-D1
4/8/99 18
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector English
5. Ensure that the power source supplies the correct voltage and is designed for the necessary current.
Ensure that the appropriate circuit-breakers with the specified current rating are connected between the power supply and inverter see section 8.
6. For the power input, use a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.
7. Use a 4-core screened cable to connect the motor.
8. Carefully measure and cut the cable leads for power connections, motor connections and braking resistor connections (if required) before feeding the screened cables through the glands in the metal gland plate provided (see Figure 2.2.2) and securing the glands.
9. Carefully measure and cut the cable leads for the control connections (if required). Feed the control cable through the correct gland (see Figure 2.2.2) and secure the gland to the metal gland-plate.
10. Carefully feed the power and control leads through the correct holes in the inverter housing.
11. Secure the metal gland plate to the underside of the inverter. Fit and tighten the earth securing screw.
12. Connect the power input leads to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) shown in Figure 2.2.1 and torque down the screws.
13. Connect the motor leads to the motor terminals U, V, W and the earth (PE) (shown in Figure 2.2.1) and torque down the screws.
Note: For operation with cables longer than 25m see section 1.3.4
14. If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and B- terminals under the inverter.
15. Connect the control leads as shown in Figures 2.2.4 and 2.2.6.
© Siemens plc 1999
19
G85139-H1751-U529-D1
4/8/99
English 2. INSTALLATION – MICROMASTER Vector
2.2.3 Power and Motor Connections — MICROMASTER Vector — Frame Size C
G
F
C
E
D
B
A
A: Fan housing opening tab
B & C: Gland plate release tabs
D:
E:
Control cable input
Mains cable input
F:
G:
Motor cable output
Braking resistor/ DC link cable input
H
J
H:
J:
Fan connector
Fan Housing removal tab
To remove fan housing and fan disconnect fan connector ‘H’, release tab ‘J’ in direction shown and remove fan and housing in same direction.
Figure 2.2.3: Power Connections Access Diagram — Frame Size C
G85139-H1751-U529-D1
4/8/99 20
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector English
The terminal arrangement for frame size C is similar to frame size A.
Refer to Figures 2.2.1 and 2.2.3 and proceed as follows:
1. While supporting the fan housing with one hand, insert the blade of a screwdriver into slot A on the underside of the inverter and press upwards to release the securing tab. Lower the fan housing, allowing it to swing out to the right on its side-mounted hinges.
2. Applying pressure to the gland plate release clips B and C in the direction of the arrows. Swing the plate out to the left on its side-mounted hinges.
3. Ensure that the power source supplies the correct voltage and is designed for the necessary current (see
section . Ensure that the appropriate circuit-breakers with the specified current rating are connected between the power supply and inverter (see section
.
4. For the power input, use a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.
5. Use a 4-core screened cable to connect the motor.
6. Carefully measure and cut the cable leads for power connections, motor connections and braking resistor connections (if required) before feeding the screened cables through the glands in the metal gland plate and securing the glands.
7. Carefully measure and cut the cable leads for the control connections (if required). Feed the control cable through the correct gland and secure the gland to the metal gland-plate.
8. Connect the power input leads to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) (shown in Figure 2.2.1) and torque down the screws.
9. Connect the motor leads to the motor terminals U, V, W and the earth (PE) (shown in Figure 2.2.1) and torque down the screws.
Note: For operation with cables longer than 25m see section 1.3.4
10.If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and
B- terminals under the inverter.
11.Connect the control leads as shown in Figures 2.2.4 and 2.2.6
© Siemens plc 1999
21
G85139-H1751-U529-D1
4/8/99
English
2.2.4 Control Connections
2. INSTALLATION – MICROMASTER Vector
Insert small blade screwdriver (max. 3.5 mm) as shown, while inserting control wire from below. Withdraw the screwdriver to secure the wire.
Output Relays max. 2.0A / 110 V AC
0.8 A / 230 V AC (overvoltage cat.2) or
2A / 30 V DC
(resistive rating)
P10+ 0V AIN+ AINDIN1 DIN2 DIN3 DIN4 P15+
PIDIN+ PIDIN-
1 2
23
3 4
24 25
5
26
6 7 8 9 10 11
Power Supply
(+10 V, max. 10 mA)
Analogue Input 1
-10 V to +10 V
0/2
⇒
10 V
(input impedance 70 k Ω ) or
0/4
⇒
20 mA
(resistance = 300
Ω
)
Analogue input 2
0
⇒
10 V or
0
⇒
20 mA
Digital Inputs
(7.5 — 33 V, max. 5 mA)
Power Supply for
PID Feedback
Transducer
(+15 V, max. 50 mA)
AOUT+ AOUTPTC PTC DIN5 DIN6
12 13 14 15 16 17 18 19 20
21
22
RL1A
(NC)
RL1B
(NO)
RL1C
(COM)
RL2B
(NO)
RL2C
(COM)
Analogue Output
0/4 — 20 mA
(500 Ω load)
Digital Inputs
(7.5 — 33 V, max.5 mA)
Motor temp. protection input
Note: For PTC motor thermal protection, P087 = 1
5
9
1
6
0V
N-
P+
PE (case)
5V (max. 250mA)
PE
N-
P+
RS485
(for USS protocol)
P5V+
Control Terminals
Front Panel
RS485 D-type
Figure 2.2.4: Control Connections — MICROMASTER Vector
Note: Do not use the internal RS485 connections (terminals 24 and 25) if you intend using the external
RS485 connection on the front panel e.g. to connect a Clear Text Display (OPM2).
DIP switches select between voltage (V) and current (I) analogue inputs and also select either a voltage or current feedback signal (see Figure 4.1.2: DIP Selector Switches). These switches can only be accessed when the flap in the the front cover is raised (see Figure 2.2.1).
G85139-H1751-U529-D1
4/8/99 22
© Siemens plc 1999
2. INSTALLATION – MICROMASTER Vector English
2.2.5 External Motor Thermal Overload Protection
When operated below rated speed, the cooling effect of fans fitted to the motor shaft is reduced. so that most motors require de-rating for continuous operation at low frequencies. To ensure that motors are protected against overheating under these conditions it is strongly recommended that a PTC temperature sensor is fitted to the motor and connected to the inverter control terminals as shown in Figure 2.2.5.
Note: To enable the motor overload protection trip function, set parameter P087=1
14
MOTOR
PTC
Inverter Control
Terminals
15
Figure 2.2.5: Motor Overload PTC Connection.
© Siemens plc 1999
23
G85139-H1751-U529-D1
4/8/99
English
2.2.6 Block Diagram — MICROMASTER Vector
2. INSTALLATION – MICROMASTER Vector
PE
1 — 3 AC 208 — 230 V
3 AC 380 — 500 V
SI
PE
L/L1, N/L2 or
L/L1, N/L2, L3
≥ 4.7 k
Ω
1
V:
0 — 10 V
2 — 10 V
OR
AIN1+
2
AIN1-
3
4
I:
0 — 20 mA
4 — 20 mA
OR
–
+
24 V
DIN1
DIN2
DIN3
DIN4
AIN2/PID+
7
8
9
5
6
10
AIN2/PID —
11
AOUT+
12
AOUT-
Motor
PTC
13
14
DIN5
DIN6
15
16
17
+15V
+10V
0V
AD
AD
DA
RL1
18
19
20
RL2
21
22
N-
P+
23
24
25
26
PE
RS485
5V+
CPU
Jog
P
RS485
DIP Switches
1 2 3 4 5
~
3
~
B+/DC+
R
B-
PE U, V, W
M
Figure 2.2.6 Block Diagram — MICROMASTER Vector
G85139-H1751-U529-D1
4/8/99
© Siemens plc 1999
24
3. INSTALLATION – MIDIMASTER Vector
3. INSTALLATION — MIDIMASTER Vector
3.1 Mechanical Installation
English
WARNING
THIS EQUIPMENT MUST BE EARTHED.
This equipment must not be energised with the cover removed.
To guarantee the safe operation of the equipment it must be installed and commissioned properly by qualified personnel in compliance with the warnings laid down in these operating instructions.
Take particular note of the general and regional installation and safety regulations regarding work on high voltage installations (e.g. VDE), as well as the relevant regulations regarding the correct use of tools and personal protective gear.
Mount the inverter vertically to a flat, non combustible surface. Make sure that the unobstructed clearance for each of the cooling inlets and outlets above and below the inverter is at least 100 mm.
Environmental requirements are described in section 1.1
The MIDIMASTER Vector must be secured to a suitable load-bearing wall by M8 bolts, washers and nuts.
Frame size 4, 5 and 6 units need four bolts. Frame size 7 units should be lifted using the two lifting holes and secured by six bolts.
W
W
W
W
H
H
H
H
D
D D
D
Figure 3.1.1: MIDIMASTER Vector — Frame Size 4, 5, 6 and 7
© Siemens plc 1999
25
G85139-H1751-U529-D1
4/8/99
English
W1
H1
Depth D
H
3. INSTALLATION – MIDIMASTER Vector
W
Frame Sizes 4, 5 and 6
W1
∅
∅
= 8.5 mm
4 bolts M8
4 nuts M8
4 washers M8
H1
H
Depth D
∅
∅
= 8.5 mm
W
Frame Size 7
Figure 3.1.2: Mechanical Installation Diagram — MIDIMASTER Vector
6 bolts M8
6 nuts M8
6 washers M8
G85139-H1751-U529-D1
4/8/99 26
© Siemens plc 1999
3. INSTALLATION – MIDIMASTER Vector English
Model
MDV220/4
MDV400/4
MDV550/2
MDV550/4
MDV750/2
MDV750/3
MDV750/4
MDV1100/2
MDV1100/3
MDV1100/4
MDV1500/2
MDV1500/3
MDV1500/4
MDV1850/2
MDV1850/3
MDV1850/4
MDV2200/2
MDV2200/3
MDV2200/4
MDV3000/2
MDV3000/3
MDV3000/4
MDV3700/2
MDV3700/3
MDV3700/4
MDV4500/2
MDV4500/3
MDV5500/3
MDV7500/3
—
—
—
7
7
—
—
—
—
7
—
—
—
—
6
6
—
—
—
—
5
6
—
4
—
—
—
4
—
3 AC 208
— 240 V
3AC 380
-500 V
Frame Size
4
—
—
—
—
5
—
—
—
—
—
4
6
—
—
—
—
6
7
7
—
—
7
5
—
—
—
—
6
3 AC 525 —
575 V
—
6
6
—
—
—
—
—
6
—
—
5
5
—
—
—
—
4
4
—
—
—
—
4
4
4
—
—
Frame Sizes ( mm)
IP21 / NEMA 1
W H D W1 H1
4 = 275 x 450 x 210 235 430
5 = 275 x 550 x 210 235 530
6 = 275 x 650 x 285 235 630
7 = 420 x 850 x 310 374 830
IP20/NEMA 1 with integrated EMC class A filter
W H D W1 H1
4 = 275 x 700 x 210 235 680
5 = 275 x 800 x 210 235 780
6 = 275 x 920 x 285 235 900
7 = 420 x 1150x 310 374 1130
IP56 / NEMA 4/12
W H D W1 H1
4 = 360 x 675 x 376 313 649
5 = 360 x 775 x 445 313 749
6 = 360 x 875 x 505 313 849
7 = 500 x 1150 x 595 451 1122
Notes
Note:
Dimension D includes the front control panel.
If a Clear Text Display
(OPM2) is to be included, an additional 30mm will be required.
Filtered MIDIMASTER
Vector versions are available up to 460V mains supply only.
Note:
Dimension D includes the front panel access door.
Figure: 3.1.2 (continued)
© Siemens plc 1999
27
G85139-H1751-U529-D1
4/8/99
English 3. INSTALLATION – MIDIMASTER Vector
3.2 Electrical Installation
Read the Wiring Guidelines given in section 1.2 before commencing installation.
The electrical connectors on the MIDIMASTER Vector are shown in Figure 3.2.1.
DC-
DC+
PE
L1
L2 L3
FS7 units
U V W
DC-
DC+
PE
Jog
P
L1 L2
FS6 units
L3 U V W
DIP switches
Note: Switch 6 not used
1 2 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
27
26
25
24
23
22
21
FS6 units
Control terminals
L1 L2 L3
FS4/5 units
PE PE DC-DC+ U V W
Power and
Motor terminals
Figure 3.2.1: MIDIMASTER Vector Connectors
G85139-H1751-U529-D1
4/8/99 28
© Siemens plc 1999
3. INSTALLATION – MIDIMASTER Vector English
To gain access to the power and control terminals:
•
Frame size 4, 5 : remove the four M4 screws from the front cover and remove the cover from the inverter.
•
Frame size 6: remove the six M4 screws from the front cover and remove the cover from the inverter.
•
Frame size 7: remove the four M4 screws from the lower front cover and remove the lower front cover from the inverter.
WARNING
Ensure that the motor is configured for the correct supply voltage.
Make sure that the input power supply is isolated before making or changing any connections.
When synchronous machines are connected or when coupling several motors in parallel, the inverter must be operated with voltage/frequency control characteristic (P077= 0 or 2) and slip compensation must be disabled (P071 = 0).
CAUTION
The control, power supply and motor leads must be laid separately. They must not be fed through the same cable conduit/trunking.
High voltage insulation test equipment must not be used on cables connected to the inverter.
Use screened cable for the control cable, Class 1 60/75 o
C copper wire only.
Feed the cables through the correct glands in the base of the inverter. Secure the cable glands to the inverter and connect the leads to the power, motor and control terminals in accordance with the information supplied in sections 3.2.1 and 3.2.2. Ensure that the leads are connected correctly and the equipment is properly earthed.
Frame size 4 and 5: Tighten up each of the power and motor terminal screws to 1.1 Nm.
Frame size 6: Tighten up each of the power and motor terminal Allen-screws to 3.0 Nm.
Frame size 7: Tighten up each of the M12 power and motor terminal nuts to 30 Nm.
Secure the front cover to the inverter when all connections are complete.
3.2.1 Power and Motor Connections
1. Ensure that the power source supplies the correct voltage and the necessary current. Ensure that the appropriate circuit-breaker or fuses with the specified current rating are connected between the power supply and inverter (see section .
2. Connect the power input to the power terminals L1, L2, L3 (3 phase) and earth (PE) (shown in Figure 3.2.1) using a 4-core cable and lugs to suit the cable size. For the cross-section of each core, see section 8.
3. Use a 4-core screened cable and suitable lugs to connect the motor leads to the motor terminals U, V, W and earth (PE) (shown in Figure 3.2.1).
Note: For operation with cables longer than 25m see section 1.3.4
4. If required, connect the braking unit leads to the DC- and DC+ terminals.
5. Tighten all the power and motor terminals.
Asynchronous and synchronous motors can be connected to the MIDIMASTER Vector inverters either individually or in parallel.
Note : If a synchronous motor is connected to the inverter, the motor current may be two and a half to three times greater than that expected so the inverter must be de-rated accordingly.
© Siemens plc 1999
29
G85139-H1751-U529-D1
4/8/99
English 3. INSTALLATION – MIDIMASTER Vector
3.2.2 Control Connections
Control connections to the MIDIMASTER Vector are made via two terminal blocks located as shown in Figure
3.2.1. The terminal blocks are of a two-part design. The part containing the screw terminals can be unplugged from it’s housing before wires are connected. When all connections to the terminals have been made (as
shown in Figures 3.2.1 and 3.2.2) and secured, the terminal block must be plugged firmly back into it’s housing.
P10+ 0V AIN+ AINDIN1 DIN2 DIN3
DIN4
P15+
PIDIN+
PIDINA1OUT+ AOUT- PTC PTC DIN5 DIN6
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20
RL1A
(NC)
RL1B
(NO)
RL1C
(COM)
Analogue input 2
0
⇒10 V or
0
⇒20 mA
Power Supply
(+10 V, max. 10 mA)
Digital Inputs
(7.5 — 33 V, max. 5 mA)
Analogue Input 1
-10 V to +10 V
0/2
⇒ 10 V
(input impedance 70 k
Ω) or
0/4
⇒ 20 mA )
(Resistance = 300
Ω)
Power Supply for PID Feedback
Transducer
(+15 V, max. 50 mA)
Output Relays (RL1 and RL2) max. 0.8 A / 230 V AC
(overvoltage cat.2)
2.0 A / 30 V DC
(resistive rating)
A2OUT+
Analogue Output 1
0/4 — 20 mA
(500
Ω load)
Digital Inputs
(7.5 — 33 V, max. 5 mA)
Motor temp.protection input
Note: For PTC motor thermal
protection, P087 = 1
21
22
23 24 25 26
27
5
9
6
1
RL2B
(NO)
RL2C
(COM)
P5V+
P+ N-
RS485
(for USS protocol)
PE
Control Terminals
Analogue Output 2
0/4 — 20 mA
(500
Ω load) use with terminal 13
0V
N-
P+ PE (case)
5V(max.250mA)
Front Panel
RS485 D-type
Figure 3.2.2: Control Connections — MIDIMASTER Vector
Note: Do not use the internal RS485 connections (terminals 24 and 25) if you intend using the external
RS485 connection on the front panel e.g. to connect an Clear Text Display (OPM2).
DIP switches select between voltage (V) and current (
I
) analogue inputs. They also select between either a voltage or current PID feedback signal (see Figure 4.1.2: DIP Selector Switches). These switches can only be accessed when:
•
for Frame size 4, 5 and 6 the front cover is removed (see Figure 3.2.1).
•
for Frame size 7 the lower front cover is removed (see Figure 3.2.1).
3.2.3 Motor Overload Protection
When operated below rated speed, the cooling effect of fans fitted to the motor shaft is reduced. so that most motors require de-rating for continuous operation at low frequencies. For protection measures using a PTC see section 2.2.5.
G85139-H1751-U529-D1
4/8/99 30
© Siemens plc 1999
3. INSTALLATION – MIDIMASTER Vector
3.2.4 Block Diagram – MIDIMASTER Vector
≥4.7kΩ
1
V:
0 — 10 V
2 — 10 V
OR
AIN1+
2
AIN1-
3
4
I:
0 — 20 mA
4 — 20 mA
OR
–
+
24 V
DIN1
DIN2
DIN3
DIN4
AIN2/PID+
5
6
7
8
9
10
AIN2/PID —
11
A1OUT+
12
AOUT-
Motor
PTC
13
14
DIN5
DIN6
15
16
+15V
+10V
0V
AD
AD
DA
17
RL1
18
19
20
RL2
21
22
+5V
P+
N-
A2OUT+
AOUT-
23
24
25
26
27
13
RS485
PE
DA
CPU
PE
3 AC 208 — 230 V
3 AC 380 — 500 V
3 AC 525 — 575 V
PE
SI
L1, L2, L3
English
Jog
P
RS485
DIP Switches
1 2 3 4
5
(
Note:Switch 6 not used)
6
~
3
~
DC+
DC-
EBU
© Siemens plc 1999
31
PE U, V, W
M
G85139-H1751-U529-D1
4/8/99
English 4. CONTROLS & BASIC OPERATION
4. CONTROLS & BASIC OPERATION
4.1 Controls
CAUTION
The digital frequency setpoint has been set at 5.00 Hz in the factory. It is not necessary to enter a frequency setpoint via the
∆
button or parameter P005 in order to test that the motor turns following a RUN command.
All settings must be entered by qualified personnel, paying particular attention to the safety precautions and warnings.
The parameter settings required can be entered using the three parameterisation buttons (P,
∆
and
∇
) on the front panel of the inverter. The parameter numbers and values are indicated on the four digit LED display.
LED Display
JOG
Button
FORWARD / REVERSE
Button
RUN
Button
UP / INCREASE
Frequency
Jog
STOP
Button
DOWN / DECREASE
Frequency
P
RS485
Interface
Parameterisation
Button
Removable
Cover Strip
Jog
Pressing this button while the inverter is stopped causes it to start and run at the preset jog frequency. The inverter stops as soon as the button is released. Pressing this button while the inverter is running has no effect. Disabled if P123 = 0.
Press to start the inverter. Disabled if P121 = 0.
LED Display
Press to stop the inverter. Press once for an OFF1 (see section 5.4). Press twice (or hold down) for an OFF2
(see section 5.4) to immediately remove voltage from the motor allowing the motor to coast to a halt without ramp-down.
Displays frequency (default), parameter numbers or parameter values (when P is pressed) or fault codes.
Press to change the direction of rotation of the motor. REVERSE is indicated by a minus sign (values <100) or the left decimal point flashing(values > 100). Disabled if P122 = 0
Press to INCREASE frequency. Used to change parameter numbers or values to higher settings during the parameterisation procedure. Disabled if P124 = 0.
Press to DECREASE frequency. Used to change parameter numbers or values to lower settings during the parameterisation procedure. Disabled if P124 = 0.
Press to access parameters. Disabled if P051 — P055 or P356 = 14 when using digital inputs. Press and hold to access higher resolution for some parameters. See section 6
P
Figure 4.1.1: Front Panel
G85139-H1751-U529-D1
4/8/99
© Siemens plc 1999
32
4. CONTROLS & BASIC OPERATION English
4.1.2 DIP Selector Switches
The five DIP selector switches have to be set in agreement with P023 or P323 according to the operation of the inverter. Figure 4.1.2 below, shows the settings of the switches for the different modes of operation.
Analogue input 1 configuration
Analogue input 2 (PID input) configuration
ON
OFF
1 2 3 4 5
6
Switch 6 not used
1 2 3
0 V to 10 V or
2 V to 10 V
-10 V to +10 V
0 to 20 mA or
4 to 20 mA
4
5
0 V to 10 V or
2 V to 10 V
0 to 20 mA or
4 to 20 mA
Note:
= ON position
Figure 4.1.2. DIP Selector Switches
© Siemens plc 1999
33
G85139-H1751-U529-D1
4/8/99
English 4. CONTROLS & BASIC OPERATION
4.2 Basic Operation
Refer to section 6 for a full description of each parameter.
4.2.1 General
(1) The inverter does not have a main power switch and is therefore live when the mains supply is connected. It waits with the output disabled until the RUN button is pressed or for the presence of a digital ON signal via terminal 5 (rotate right- default) or terminal 6 (rotate left- default) — see parameters
P051 to P055 and P356.
(2) If output frequency (P001 = 0) is selected as the display, the corresponding setpoint is flashed on the display approximately every 1.5 seconds while the inverter is stopped.
(3) The inverter is programmed at the factory for standard applications on Siemens standard motors.
When using other motors it is necessary to enter the specifications from the motor’s rating plate into parameters P080 to P085 (see Figure 4.2.1). Note: Access to these parameters is not possible
unless P009 = 002 or 003.
P081
P080
P084 cosϕ 0,81
50 Hz
220/380 V
∆
/Y
0,61/0,35 A
0,12
kW
2745
/min
VDE 0530
3 Mot
IEC 56
IM B3
1LA5053-2AA20
Nr. E D510 3053
IP54 Rot. KL 16
60 Hz 440 V Y
0,34 A
0,14 kW cos ϕ
0,81
3310 /min
S.F. — 1,15
P083 P082 P085
12 022
I.Cl.F
Figure 4.2.1: Typical Motor Rating Plate Example
Note:
Ensure that the inverter is configured correctly to the motor, i.e. in the above example delta terminal connection is for 220 V.
4.2.2 Initial Testing
1. Check that all cables have been connected correctly (see section 2 or 3 ) and that all relevant product and plant/location safety precautions have been complied with.
2. Apply mains power to the inverter.
3. Ensure that it is safe to start the motor. Press the RUN button on the inverter. The display will change to 5.0 and the motor shaft will begin to turn. It will take 1 second for the inverter to ramp-up to 5 Hz.
4. Check that the motor rotates in the direction required. Press the FORWARD / REVERSE button if necessary.
5. Press the Stop button. The display will change to 0.0 and the motor will slow down, achieving a complete stop after 1 second.
G85139-H1751-U529-D1
4/8/99 34
© Siemens plc 1999
4. CONTROLS & BASIC OPERATION English
4.2.3 Basic Operation — 10 Step Guide
The basic method of setting up the inverter for use is described below. This method uses a digital frequency setpoint and requires only the minimum number of parameters to be changed from their default settings. It assumes that a standard Siemens four-pole motor is connected to the inverter (see section 4.2.1 if another
motor type is being used).
Step/Action
1. Apply mains power to the inverter.
The display will alternate between the actual frequency (0.0 Hz) and the requested frequency setpoint (5.0 Hz default).
Button Display
2. Press the parameterisation button.
3. Press the
∆
button until parameter P005 is displayed.
4. Press P to display the present frequency setpoint (5 Hz is the factory default setting).
5. Press the
∆
button to set the desired frequency setpoint
(e.g. 35 Hz).
6. Press P to lock the setting into memory.
7. Press the
∇
button to return to P000.
8. Press P to exit the parameterisation procedure.
The display will alternate between the present output frequency and the frequency setpoint.
P
P
P
P
9. Start the inverter by pressing the RUN button.
The motor shaft will start to turn and the display will show that the inverter is ramping up to the setpoint of 35 Hz.
Note
The setpoint will be achieved after 7 seconds (default ramp-up time, defined by P002 is 10s to reach 50 Hz, the default maximum motor frequency, P013).
If required, the motor’s speed (i.e. frequency) can be varied directly by using the
∆ ∇
buttons. (Set P011 to 001 to enable the new frequency setting to be retained in memory during periods when the inverter is not running.)
10. Switch the inverter off by pressing the STOP button.(see section 5.4)
The motor will slow down and come to a controlled stop.
Note
Full stop will be achieved after 7 seconds (default ramp-down time, defined by P003 is 10 s from 50 Hz, the default value P013).
© Siemens plc 1999
35
G85139-H1751-U529-D1
4/8/99
English 5. OPERATING MODES
5. OPERATING MODES
5.1 Digital Control
For a basic start-up configuration using digital control, proceed as follows:
(1) Connect control terminal 9 to terminal 5 via a simple on/off switch. This sets up the inverter for clockwise rotation of the motor shaft (default).
(2)
(3)
(4)
(5)
(6)
(7)
Secure all covers to the unit and then apply mains power to the inverter. Set parameter P009 to 002 or
003 to enable all parameters to be adjusted.
Check that parameter P006 is set to 000 to specify digital setpoint.
Set parameter P007 to 000 to specify digital input (i.e. DIN1, terminal 5 in this case) and disable the front panel controls.
Set parameter P005 to the desired frequency setpoint.
Set parameters P080 to P085 in accordance with the rating plate on the motor (see Figure 4.2.1).
Set the external on/off switch to ON. The inverter will now drive the motor at the frequency set by P005.
(5)
(6)
(7)
(8)
(9)
5.2 Analogue Control
For a basic start-up configuration using analogue voltage control, proceed as follows:
(1) Connect control terminal 9 to terminal 5 via a simple on/off switch. This sets up the motor for clockwise rotation (default).
(2) Connect a 4.7 k
Ω
potentiometer to the control terminals as shown in Figures 2.2.4 and 2.2.6 (MMV)
(Figures 3.2.2 and 3.2.4 (MDV)) or connect pin 2 (0V) to pin 4 and a 0 — 10 V signal between pin 2 (0V) and pin 3 (AIN+).
(3)
(4)
Set the Analogue Input 1 Configuration DIP selector switches 1, 2 and 3 for voltage (V) input. (see
Figure 3.2.2-3.2.4, Section 4.1.2)
Secure all covers to the unit and then apply mains power to the inverter. Set parameter P009 to 002 or
003 to enable all parameters to be adjusted.
Set parameter P006 to 001 to specify analogue setpoint.
Set parameter P007 to 000 to specify digital input and disable the front panel controls.
Set parameters P021 and P022 to specify the minimum and maximum output frequency settings.
Set parameters P080 to P085 in accordance with the rating plate on the motor (see Figure 4.2.1).
Set the external on/off switch to ON. Turn the potentiometer (or adjust the analogue input control voltage) until the desired frequency is displayed on the inverter.
5.3 Motor Control Modes
The MICROMASTER Vector and MIDIMASTER Vector inverters have four different modes of operation which control the relationship between the voltage supplied by the inverter and the speed of the motor. The motor control mode of operation is selected at P077:
•
Linear voltage/frequency Operation.
•
Flux Current Control (FCC) which is used to maintain full flux conditions in the motor.
•
Quadratic voltage/frequency relationship which is used for pumps and fans.
•
Sensorless Vector. The inverter calculates the changes required in output voltage to maintain the desired motor speed.
These modes are described in more detail below.
G85139-H1751-U529-D1
4/8/99 36
© Siemens plc 1999
5. OPERATING MODES English
5.3.1 Linear Voltage to Frequency (V/f) (P077 = 0 or 2)
This mode is used for synchronous motors or motors connected in parallel. Each motor should be installed with a thermal overload relay if two or more motors are driven simultaneously by the inverter.
In many cases, when default factory parameters are used, the default stator resistance set in P089 will generally suit the default power rating set in P085. Should the inverter and motor ratings differ, an automatic
Stator Resistance calibration should be performed by setting P088 =1. Continuous Boost (P078) and Starting
Boost (P079) are dependent on the value of Stator Resistance — too high a value may cause overcurrent trips or motor overheating.
5.3.2 Flux Current Control (FCC) Operation (P077 = 1)
Flux Current Control operates by monitoring and maintaining the motor flux current continuously. This ensures that the best performance and efficiency are obtained. FCC is not as complex as SVC, and therefore is easier to set up and operate.
Note: This mode can result in reduced power consumption.
5.3.3 Sensorless Vector Control (SVC) Operation (P077 = 3)
When SVC operating mode is selected (P077=3), the inverter uses an internal mathematical model of the motor, together with accurate current sensing, to calculate the position and speed of the rotor. It is therefore able to optimise the applied voltage and frequency to the motor to give improved performance.
Output to Motor
Error
P, I,
Processor
(P386, P387)
Setpoint
Input
Internal Motor
Model
Motor Model Speed, Position and Torque feedback
Figure 5.3.3 : MICROMASTER Vector sensorless Vector operation
Although there is no position or speed feedback from the motor, the control system is a closed loop system because it compares the internal motor model performance with the desired performance. The system must therefore be carefully set up and stabilised for best performance.
Setting up SVC Operation
1. Set the correct Motor parameter settings in Parameters P080 to P085.
2. Select Sensorless Vector Operating mode P077 = 3
3. Ensure that the motor is cold and apply a run command. The display will show CAL to indicate that it is measuring the motor stator resistance. After a few seconds the motor will run. Calibration only occurs the first time that a run command is given following P077 being set to 3. It can be forced by changing P077 from SVC operation and back again, or by selecting P088 =1 (Stator Resistance Calibration). Interrupting the calibration process by disconnecting the power or removing the run command may give erroneous
© Siemens plc 1999
37
G85139-H1751-U529-D1
4/8/99
English 5. OPERATING MODES
4.
results and calibration should be repeated. If motor parameters are changed recalibration is also recommended.
Like any control system, SVC must be stabilised by setting the Gain (P386) and Integral (P387) terms.
Actual values and setting up is determined by testing, but the following procedure is suggested:
Whilst the inverter is operating under typical conditions, increase the value of P386, the loop gain, until the first signs of speed instability occur. The setting should then be reduced slightly
(approx. 10%) until stability is restored. As a guide, the optimum setting required will be proportional to the load inertia.
For example: P386 = Load inertia + motor shaft inertia
motor shaft inertia
P387, the integral term, may now be adjusted. Again, whilst operating the inverter under typical conditions, increment this parameter until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 30%) until stability is restored.
If fault code F016 occurs, this indicates that SVC is unstable and further adjustment or recalibration is needed.
F001, DC link overvoltage can also be caused by instability in SVC operating mode.
For further information concerning SVC operation refer to Application Note “Sensorless Vector Control”, which may be obtained from http://www.con.siemens.co.uk or a Siemens Sales Office.
Note: This mode gives the best flux control and higher torque.
5.4 Stopping the Motor
Stopping can be achieved in several ways:
•
Cancelling the ON command on the terminals or pressing the OFF button (O) on the front panel causes the inverter to Ramp-down at the selected Ramp-down rate (see P003).
•
OFF2 — operation causes the motor to coast to a standstill (parameters P051 to P055 or P356 set to 4).
•
OFF3 — operation causes rapid braking (parameters P051 to P055 or P356 set to 5).
•
DC injection braking up to 250% produces more effective braking to provide a quicker stop after cancellation of the ON command (see P073).
•
Resistive braking for MMV (see parameter P075).
•
Compound braking (see P066)
5.5 If the Motor Does Not Start Up
If the display shows a fault code, refer to section 7.
If the motor does not start up when the ON command has been given, check that the ON command is valid, check if a frequency setpoint has been entered in P005 and check that the motor specifications have been entered correctly under parameters P080 to P085.
If the inverter is configured for operation via the front panel (P007 = 001) and the motor does not start when the
RUN button is pressed, check that P121 = 001 (RUN button enabled).
If the motor does not run after parameters have been changed accidentally, reset the inverter to the factory default parameter values by setting parameter P944 to 1 and then pressing P.
5.6 Local and Remote Control
The inverter can be controlled either locally (default), or remotely via a USS data line connected to the internal interface terminals (24 and 25) or to the RS485 D-type connector on the front panel. (Refer to parameter P910 in section 6 for the available remote control options.)
When local control is used, the inverter can only be controlled via the front panel or the control terminals.
Control commands, setpoints or parameter changes received via the RS485 interface have no effect.
G85139-H1751-U529-D1
4/8/99 38
© Siemens plc 1999
5. OPERATING MODES English
For remote control, the serial interface is designed as a 2-wire connection for bi-directional data transmission.
Refer to parameter P910 in section 6 for the available remote control options.
Note: Only one RS485 connection is allowed. Use either the front panel D-type interface [e.g. to connect an
Clear Text Display(OPM2)] or terminals 24 and 25, but not both.
When operating via remote control the inverter will not accept control commands from the terminals. Exception:
OFF2 or OFF3 can be activated via parameters P051 to P055 and P356 (see section 6).
Several inverters can be connected to an external control unit at the same time. The inverters can be addressed individually.
Note: If the inverter has been set up to operate via the serial link but does not run when an ON command is received, try reversing the connections to terminals 24 and 25 .
For further information, refer to the following documents:
E20125-B0001-S302-A1
E20125-B0001-S302-A1-7600
Application of the USS Protocol in SIMOVERT Units 6SE21 and
MICROMASTER (German)
Application of the USS Protocol in SIMOVERT Units 6SE21 and
MICROMASTER (English)
5.7 Closed Loop Control
5.7.1 General Description
The MICROMASTER provides a PID control function for closed loop control (see Figure 5.7.1). PID control is ideal for temperature or pressure control, or other applications where the controlled variable changes slowly or where transient errors are not critical. This control loop is not suitable for use in systems where fast response times are required. When closed loop process control is enabled (P201 = 001), all setpoints are calibrated between zero and 100%, i.e. a setpoint of 50.0 = 50%.
Set point input
Integral capture
P207
Proportional
Gain
P202
Integral
Gain
P203
Differential
Gain
P204
Ramp rates,
P002, P003
Motor
Closed Loop
Control on/off
P201
Transducer
Type
P208
Scaling
P211
P212
MICROMASTER
Sample
Interval
P205
Filter
/Integrator
P206
MICROMASTER Closed loop PID control — Block Diagram
Figure : 5.7.1 – MICROMASTER / MIDIMASTER VECTOR Closed loop PID control
Process
© Siemens plc 1999
39
G85139-H1751-U529-D1
4/8/99
English 5. OPERATING MODES
5.7.2 Hardware Set-up
Make sure that the DIP selector switches 4 and 5 are correctly set (see Figure 4.1.2) and in agreement with
P323 for unipolar voltage or current feedback signal inputs. Connect the external feedback transducer between control terminals 10 and 11 (analogue input 2). This analogue input accepts a 0/2 — 10 V or a 0/4 — 20 mA input signal (determined by the setting of the DIP selector switches 4 and 5 and P323), has 10-bit resolution and permits a differential (floating) input. 15 V dc power for the feedback transducer can be supplied from terminal 9 on the control block.
5.7.3 Parameter Settings
Closed loop process control cannot be used unless P201 is first set to 001. Most of the parameters associated with closed loop process control are shown in Figure 5.7.1. Other parameters which are also associated with closed loop process control are as follows:
P010 (only if P001 = 1, 4, 5, 7 or 9)
P061 (value = 012 or 013)
P220
Descriptions of all closed loop process control parameters are provided in section 6. For detailed information about PID operation, refer to the application note “Closed Loop Control”, which may be obtained from
http://www.con.siemens.co.uk or a Siemens sales office.
G85139-H1751-U529-D1
4/8/99 40
© Siemens plc 1999
6. SYSTEM PARAMETERS English
6. SYSTEM PARAMETERS
Parameters can be changed and set using the keypad on the front panel (see Figure 4.1.1) to adjust the desired properties of the inverter, such as ramp times, minimum and maximum frequencies, etc. The parameter numbers selected and the setting of the parameter values are indicated on the four digit LED display.
Note: If the
∆
or
∇
button is pressed momentarily, the values change step by step. If the button is pressed for a longer time, the values scroll through rapidly.
Access to parameters is determined by the value set in P009. Make sure that the key parameters necessary for the application have been programmed.
Note: In the following parameter table:
‘
•
’ Indicates parameters that can be changed during operation.
‘¶¶¶’ Indicates that the value of this factory setting depends on the rating of the inverter.
Increased Parameter Resolution
To increase the resolution to 0.01 when changing frequency parameters, instead of pressing P momentarily to return to the parameter display, keep the button pressed until the display changes to ‘- -.n0’ (n = the current tenths value, e.g. if the parameter value = ‘055.8’ then n = 8). Press
∆
or
∇
to change the value (all values between .00 and .99 are valid) and then press P twice to return to the parameter display.
Resetting to Factory Defaults
If parameters are changed accidentally, all parameters can be reset to their default values by setting parameter
P944 to 1 and then pressing P.
© Siemens plc 1999
41
G85139-H1751-U529-D1
4/8/99
English
Parameter Function Range
[Default]
Description / Notes
6. SYSTEM PARAMETERS
P000
P001
•
Operating display
Display mode
—
0 — 9
[0]
0 — 650.0
[10.0]
[10.0]
This displays the output selected in P001.
In the event of a failure, the relevant fault code (Fnnn) is displayed
(see section 7) or the display flashes in the event of a warning (see
P931) or If output frequency has been selected (P001 = 0) and the inverter is in stand-by mode, the display alternates between the setpoint frequency and the actual output frequency which is zero Hz.
Display selection:
0 = Output frequency (Hz)
1 = Frequency setpoint (i.e. speed at which inverter is set to run)
(Hz)
2 = Motor current (A)
3 = DC-link voltage (V)
4 = Motor torque (% nominal)
5 = Motor speed (rpm)
6 = USS serial bus status (see section 9.2)
7 = PID Feedback signal (%)
8 = Output voltage (V)
9 = Instantaneous rotor / shaft frequency (Hz).Note: Applicable only for Sensorless Vector control mode.
Notes: 1. The display can be scaled via P010.
2. When the inverter is operating in Sensorless Vector
Control mode (P077 = 3) the display shows actual rotor /
shaft speed in Hz. When the inverter is operating in V/f or
FCC modes (P077 = 0, 1 or 2) the display shows inverter output frequency in Hz.
WARNING: In Sensorless Vector Control mode (P077
= 3) the display shows 50Hz when a 4-pole motor is rotating at 1500rpm which may be slightly higher than the nominal speed shown on the motor rating plate.
This is the time taken for the motor to accelerate from standstill to the maximum frequency as set in P013. Setting the Ramp-up time too short can cause the inverter to trip (fault code F002 — overcurrent).
Frequency f max
P002
•
Ramp-up time (seconds)
MMV
MDV550/2, 750/2, 750/3, 1100/3,
220/4, 400/4, 550/4, 750/4,
1100/4.
MDV1100/2, 1500/2, 1850/2,
2200/2, 1500/3, 1850/3, 2200/3,
3000/3, 3700/3, 1500/4, 1850/4,
2200/4, 3000/4, 3700/4.
MDV3000/2, 3700/2, 4500/2,
4500/3, 5500/3, 7500/3.
P003
•
Ramp-down time (seconds)
MMV
MDV550/2, 750/2, 750/3, 1100/3,
220/4, 400/4, 550/4, 750/4,
1100/4.
MDV1100/2, 1500/2, 1850/2,
2200/2, 1500/3, 1850/3, 2200/3,
3000/3, 3700/3, 1500/4, 1850/4,
2200/4, 3000/4, 3700/4.
MDV3000/2, 3700/2, 4500/2,
4500/3, 5500/3, 7500/3.
G85139-H1751-U529-D1
4/8/99
[20.0]
[40.0]
0 — 650.00
[10.0]
[10.0]
0 Hz
Ramp up time
(0 — 650 s)
Time
This is the time taken for the motor to decelerate from maximum frequency (P013) to standstill, Setting the Ramp-down time too short can cause the inverter to trip (fault code F001 -DC Link overvoltage).
This is also the period for which DC injection braking is applied when P073 is selected.
Frequency f max
[20.0]
[40.0]
0 Hz
Ramp down time
(0 — 650 s)
Time
© Siemens plc 1999
42
6. SYSTEM PARAMETERS
Parameter Function
P004
•
Smoothing Time (seconds)
English
Range
[Default]
Description / Notes
0 — 40.0
[0.0]
Used to smooth the acceleration/deceleration of the motor (useful in applications where it is important to avoid ‘jerking’, e.g. conveyor systems, textiles, etc.).
Smoothing is only effective if the Ramp-up and/or down time exceeds
0.3 s.
Frequency
P002 = 10 s f max
(P013)
P005
•
Digital frequency setpoint (Hz) 0 — 650.00
[5.00]
P006
Frequency setpoint source selection
0 — 3
[0]
P007
P009
•
Keypad control
Parameter protection setting
0 — 1
[1]
0 — 3
[0]
0 Hz
P004
= 5 s
P004
= 5 s
Time
Total acceleration time
= 15 s
Note: The smoothing curve for deceleration is also affected by the
Ramp-up gradient (P002). Therefore, the Ramp-down time is also affected by changes to P002.
Sets the frequency that the inverter will run at when operated in digital mode. Only effective if P006 = 0 or 3.
Selects the mode of control of the frequency setpoint for the inverter.
0 = Digital motorised potentiometer. The inverter runs at the frequency set in P005 and can be controlled with the
∆
and
∇ pushbuttons (motorised potentiometer). Alternatively, if P007 is set to zero, the frequency may be increased or decreased by setting any two of the digital inputs (P051 to P055 or P356) to values of 11 and 12.
1 = Analogue. Control via analogue input signal.
2 = Fixed frequency. Fixed frequency is only selected if the value of at least one of the digital inputs (P051 to P055 or
P356) = 6 17 or 18.
3 = Digital setpoint addition. Requested frequency = digital frequency (P005) + fixed frequencies (P041 to P044, P046 to P049) as selected.
Notes: (1) If P006 = 1 and the inverter is set up for operation via the serial link, the analogue inputs remain active.
(2) Motorised potentiometer setpoints via digital inputs are stored upon power-down when P011 = 1.
0 = RUN, JOG and REVERSE are disabled. Control is via digital inputs (see parameters P051 — P055 and P356).
∆
and
∇
may still be used to control frequency provided that P124 = 1 and a digital input has not been selected to perform this function.
1 = Front panel buttons can be selectively enabled or disabled depending on the setting of parameters P121 — P124.
Note: The digital inputs for RUN, JOG and increase/decrease frequency are disabled.
Determines which parameters can be adjusted:
0 = Only parameters from P001 to P009 can be read/set.
1 = Parameters from P001 to P009 can be set and all other parameters can only be read.
2 = All parameters can be read/set but P009 automatically resets to 0 when power is removed.
3 = All parameters can be read/set.
© Siemens plc 1999
43
G85139-H1751-U529-D1
4/8/99
English
Parameter Function Range
[Default]
Description / Notes
6. SYSTEM PARAMETERS
P010
P011
•
Display scaling
Frequency setpoint memory
0 — 500.0
[1.00]
0 — 1
[0]
Scale factor for display when P001 = 0, 1, 4, 5, 7 or 9.
Four digit resolution.
0 = Disabled
1 = Enabled after switch-off. i.e. the setpoint alterations made with the
∆
/
∇
buttons are stored even when power has been removed from the inverter.
Sets the minimum motor frequency (must be less than the value of
P013).
P012
•
Minimum motor frequency (Hz) 0 — 650.00
[0.00]
P013
•
Maximum motor frequency (Hz) 0.01-650.00
[50.00]
P014
P015
•
•
Skip frequency 1 (Hz)
Automatic restart after mains failure.
0 — 650.00
[0.00]
0 — 1
[0]
Sets the maximum motor frequency.
CAUTION: To maintain stable operation when in sensorless vector control mode (P077=3), the maximum motor frequency (P013), should not exceed 3x nominal rating plate motor frequency (P081).
A skip frequency can be set with this parameter to avoid the effects of resonance of the inverter. Frequencies within +/- (the value of P019) of this setting are suppressed. Stationary operation is not possible within this suppressed frequency range — the range is just passed through. Setting P014=0 disables this function.
Setting this parameter to ‘1’ enables the inverter to restart automatically after a mains break or ‘brownout’, provided the external run/stop switch, connected to a digital input, is still closed, P007 = 0 and P910 = 0, 2 or 4.
0 = Disabled
1 = Automatic restart
P016
•
Start on the fly 0 — 4
[0]
Allows the inverter to start onto a spinning motor.
Under normal circumstances the inverter runs the motor up from 0 Hz.
However, if the motor is still spinning or is being driven by the load, it will undergo braking before running back up to the setpoint — this can cause an overcurrent trip. By using a flying restart, the inverter ‘homes in’ on the motor’s speed and runs it up from that speed to the setpoint. (Note: If the motor has stopped or is rotating slowly, some ‘rocking’ may occur as the inverter senses the direction of rotation prior to restarting.)
0 = Normal restart
1 = Flying restart after power up, fault or OFF2 ( if P018 = 1).
2 = Flying restart every time (useful in circumstances where the motor can be driven by the load).
3 = As P016 = 1 except that the inverter will only attempt to restart the motor in the direction of the requested setpoint.
The motor is prevented from ‘rocking’ backwards and forwards during the initial frequency scan.
4 = As P016 = 2 except that the inverter will only attempt to restart the motor in the direction of the requested setpoint.
The motor is prevented from ‘rocking’ backwards and forwards during the initial frequency scan.
Note:
For MIDIMASTER Vector units, it is recommended that if
P016 > 0 then P018 should be set to ‘1’. This will ensure correct re-starting if the inverter fails to re-synchronise on the initial attempt.
IMPORTANT:
When P016 > 0, care must be taken to set up the motor nameplate data (parameters P080 toP085) and to perform an auto stator resistance calibration (P088=1) on a cold motor. Recommended maximum operating frequency should be less than 120 Hz.
G85139-H1751-U529-D1
4/8/99 44
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function Range
[Default]
Description / Notes
English
P017
P018
P022
•
•
•
Smoothing type
Automatic restart after fault
Maximum analogue frequency
(Hz)
1 — 2
[1]
0 — 1
[0]
P019
•
Skip frequency bandwidth (Hz) 0.00 — 10.00
[2.00]
P021
•
Minimum analogue frequency
(Hz)
0 — 650.00
[0.00]
0 — 650.00
[50.00]
1 = Continuous smoothing (as defined by P004).
2 = Discontinuous smoothing. This provides a fast unsmoothed response to STOP commands and requests to reduce frequency.
Note:
P004 must be set to a value > 0.0 for this parameter to have any effect.
Automatic restart after fault:
0 = Disabled
1 = The inverter will attempt to restart up to 5 times after a fault.
If the fault is not cleared after the 5th attempt, the inverter will remain in the fault state. The display flashes during this condition.
WARNING:
While waiting to re-start, the display will flash. This means that a start is pending and may happen at any time. Fault codes can be observed in P140 and P930.
Frequencies set by P014, P027, P028 and P029 that are within +/the value of P019 of all skip frequencies are suppressed.
Frequency corresponding to the lowest analogue input value, i.e.
0 V/0 mA or 2 V/4 mA, determined by P023 and the settings of the
DIP selector switches 1, 2 and 3 (see Figure 4.1.2). This can be set to a higher value than P022 to give an inverse relationship between analogue input and frequency output (see diagram in P022).
Frequency corresponding to the highest analogue input value, i.e.
10 V or 20 mA, determined by P023 and the setting of the DIP selector switches 1, 2 and 3 (see Figure 4.1.2) This can be set to a lower value than P021 to give an inverse relationship between analogue input and frequency output.
i.e.
f
P021
P022
P022
P021
V/ I
Note: The output frequency is limited by values entered for
P012/P013.
© Siemens plc 1999
45
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P023
•
Analogue input 1 type
P024
•
Analogue setpoint addition
P025
•
Analogue output 1
G85139-H1751-U529-D1
4/8/99
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 3
[0]
Sets analogue input type for analogue input 1, in conjunction with the settings of the DIP selector switches 1, 2 and 3 (see Figure 4.1.2). :
0 = 0 V to 10 V/ 0 to 20 mA Unipolar input
1 = 2 V to 10 V/ 4 to 20 mA Unipolar input
2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start / stop when using analogue input control.
3 = -10V to +10V Bipolar input. -10V corresponds to left rotation at speed set in P021, +10V corresponds to right rotation at speed set in P022
Note:
Setting P023 = 2 will not work unless the inverter is under full local control (i.e. P910 = 0 or 4) and V
≥
1 V or 2mA.
WARNING: The inverter will automatically start when voltage goes above 1V. This equally applies to both analogue and digital control (i.e. P006 = 0 or 1)
Bi-polar Input Operation
F max
P022
-10V
0.2V Hysteresis
+10V
0 — 2
[0]
0 — 105
[0]
P021
F min
If the inverter is not in analogue mode (P006 = 0 or 2), setting this parameter to:
0 = No addition to basic setpoint frequency as defined in P006.
1 = Addition of analogue input 1 to the basic setpoint frequency as defined in P006
2 = Scaling of basic setpoint (P006) by analogue input 1 in the range 0 -100%.
This provides a method of scaling the analogue output 1 in accordance with the following table:
Use range 0 — 5 if minimum output value = 0 mA.
Use range 100 — 105 if minimum output value = 4 mA
P025 = Selection Analogue Output Range Limits
0/4 mA
0 Hz
20 mA
Output frequency (P013)
0/100
Output frequency
1/101
Frequency setpoint
2/102
Motor current
0 Hz
0 A
Frequency setpoint (P013)
3/103
4/104
5/105
DC-link voltage
Motor torque
Motor RPM
0 V
-250%
0
Max. overload current
(P083 x P086 / 100)
1023 Vdc
+250%
(100% = P085 x 9.55 / P082
Nm)
Nominal motor RPM
(P082)
© Siemens plc 1999
46
6. SYSTEM PARAMETERS
Parameter Function Range
[Default]
Description / Notes
English
6/106
Motor magnetising current
7/107
Motor torque producing current
(centre zero)
0 A
0 A
Max regenerative torque
Max. overload current
(P083 x P186 / 100)
Max. overload current i.e. accelerating torque
(P083 x P186 / 100)
P026
•
Analogue output 2 (MDV only) 0 — 105
[0]
P027
•
Skip frequency 2 (Hz) 0 — 650.00
[0.00]
P028
•
Skip frequency 3 (Hz) 0 — 650.00
[0.00]
P029
•
Skip frequency 4 (Hz) 0 — 650.00
[0.00]
P031
•
Jog frequency right (Hz) 0 — 650.00
[5.00]
This provides a method of scaling the analogue output 2 in accordance with the table shown in P025.
See P014.
See P014.
See P014.
P032
P033
P034
•
•
•
Jog frequency left (Hz)
Jog Ramp-up time (seconds)
Jog Ramp-down time (seconds)
0 — 650.00
[5.00]
0 — 650.0
[10.0]
0 — 650.0
[10.0]
Jogging is used to advance the motor by small amounts. It is controlled via the JOG button or with a non-latching switch on one of the digital inputs (P051 to P055 and P356).
If jog right is enabled for one if these digital inputs (e.g. P051-55 or P356 =7) or if the Job Button is pressed this parameter controls the frequency at which the inverter will run when the switch is closed. Unlike other setpoints, it can be set lower than the minimum frequency.
If jog left is enabled (e.g. P051-55 or P356 = 8), this parameter controls the frequency at which the inverter will run when the switch is closed. Unlike other setpoints, it can be set lower than the minimum frequency.
This is the time taken to accelerate from 0 Hz to maximum frequency (P013) for jog functions. It is not the time taken to accelerate from 0 Hz to the jog frequency.
If one of the digital inputs is programmed to select jog ramp times, the corresponding digital input can be used to select the ramp time set by this parameter instead of the normal Ramp-up time set by P002.
This is the time taken to decelerate from maximum frequency (P013) to 0 Hz for jog functions. It is not the time taken to decelerate from the jog frequency to 0 Hz.
If one of the digital inputs is programmed to select jog ramp times, the corresponding digital input can be used to select the ramp time set by this parameter, instead of the normal Ramp-down time set by
P003.
© Siemens plc 1999
47
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P040
•
Positioning function
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 1
[0]
0 — Disabled
1 — Under normal operation the ramp-down time is defined as the time taken to ramp-down from the value set in P013 to 0. Setting P040 to
1 will automatically re-scale the ramp down time so that the motor will always stop in the same position regardless of operating frequency.
P013 f
Stop Command
P041
•
Fixed frequency 1 (Hz)
P042
•
Fixed frequency 2 (Hz)
P043
•
Fixed frequency 3 (Hz)
P044
•
Fixed frequency 4 (Hz)
0
0
Stop position t
e.g. P003 = 1s, P013 = 50Hz, P012 = 0Hz.
If the motor is running at 50Hz and a stop command applied, the motor will stop in 1second. If the motor is running at 25Hz, the motor will stop in 2 seconds and if the motor is running at 5Hz, the motor will stop in 10 seconds. In each case, the motor will stop at the same position.
0 — 650.00
[5.00]
0 — 650.00
[10.00]
0 — 650.00
[15.00]
0 — 650.00
[20.00]
Valid if P006 = 2 and P055 = 6 or 18, or P053-55=17
Valid if P006 = 2 and P054 = 6 or 18, or P053-55=17
Valid if P006 = 2 and P053 = 6 or 18, or P053-55=17
Valid if P006 = 2 and P052 = 6 or 18 , or P053-55=17
G85139-H1751-U529-D1
4/8/99 48
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function
P045
Inversion fixed setpoints for fixed frequencies 1 — 4
P046
•
Fixed frequency 5 (Hz)
P047
•
Fixed frequency 6 (Hz)
P048
•
Fixed frequency 7 (Hz)
P049
•
Fixed frequency 8 (Hz)
P050
Inversion fixed setpoints for fixed frequencies 5 — 8
Range
[Default]
Description / Notes
0 — 7
[0]
Sets the direction of rotation for the fixed frequency:
0 — 650.00
[25.0]
0 — 650.00
[30.0]
0 — 650.00
[35.0]
0 — 650.00
[40.0]
0 — 7
[0]
P045 = 0
P045 = 1
P045 = 2
P045 = 3
P045 = 4
P045 = 5
FF 1 FF 2
⇒
⇒
⇐
⇒
⇒
⇐
⇒
⇒
⇐
⇒
⇒
⇐
FF3
⇒
⇒
⇒
⇐
⇒
⇒
P045 = 6
P045 = 7
⇐
⇐
⇐
⇐
⇐
⇐
⇒
Fixed setpoints not inverted.
⇐
Fixed setpoints inverted.
Valid if P006 = 2 and P051 = 6 or 18. , or P053-55=17
FF 4
⇒
⇒
⇒
⇒
⇐
⇒
⇒
⇐
Valid if P006 = 2 and P356 = 6 or 18, or P053-55=17
Valid if P006 = 2, and P053-55=17
Valid if P006 = 2, and P053-55=17
Sets the direction of rotation for the fixed frequency:
P050 = 0
P050 = 1
P050 = 2
P050 = 3
P050 = 4
P050 = 5
P050 = 6
P050 = 7
FF 5 FF 6
⇒
⇒
⇐
⇒
⇐
⇒
⇒
⇒
⇐
⇐
⇐
⇒
⇒
⇐
⇐
⇐
FF7
⇒
⇒
⇒
⇐
⇒
⇒
⇐
⇐
⇒
Fixed setpoints not inverted
⇐
Fixed setpoints inverted
FF8
⇒
⇒
⇒
⇒
⇐
⇒
⇒
⇐
English
© Siemens plc 1999
49
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P051
Selection control function, DIN1
(terminal 5), fixed frequency 5.
P052
Selection control function, DIN2
(terminal 6), fixed frequency 4.
0 — 24
[1]
0 — 24
[2]
P053
Selection control function, DIN3
(terminal 7), fixed frequency 3.
If set to 17, this enables the most significant bit of the 3-bit Binary code
(see table).
0 — 24
[6]
P054
Selection control function, DIN4
(terminal 8 ), fixed frequency 2 .
If set to 17, this enables the middle bit of the 3-bit Binary code (see table).
0 — 24
[6]
P055
Selection control function, DIN5
(terminal 16 ), fixed frequency 1.
If set to 17, this enables the least significant bit of the 3-bit Binary code
(see table).
0 — 24
[6]
P356
Selection control function, DIN6
(terminal 17 ), fixed frequency 6.
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 24
[6]
Value Function of P051 to P055 and
P356
Function, low state
Function, high state
6
7
8
9
4
5
0
1
2
3
10
Input disabled
ON right
ON left
Reverse
OFF2(see section 5.4)
OFF3(see section 5.4)
Fixed frequencies 1 — 6
Jog right
Jog left
USS operation
Fault reset
(P910 =1 or 3)
Off
Off
Normal
OFF2
OFF3
Off
Off
Off
Local
Off
—
11
12
13
14
15
16
17
18
19
20
22
23
Increase frequency *
Decrease frequency *
Disable analogue input (setpoint is 0.0Hz)
Disable the ability to change parameters
Enable dc brake
Use jog ramp times instead of normal ramp times
Binary fixed frequency control
(fixed frequencies 1 — **
Fixed frequencies 1-6, but input high will also request RUN when
P007 = 0.
External trip
Watchdog trip (see P057),
(minimum pulse width = 20 ms)
Note: The first Low-to-High transition initiates the Watchdog timer.
Download parameter set 0 from
OPM2***
Download parameter set 1 from
OPM2***
Off
Off
Analogue on
‘P’ enabled
Off
Normal
Off
Off
Yes (F012)
Off
Off
Brake on
Jog ramp times
On
On
No
Low to High transition resets
Watchdog timer
Download
Download
24
Switch analogue setpoint
Analogue input 1 active.
Analogue **** input 2 active.
* Only effective when P007 = 0.
** Not available on P051, P052 or P356.
*** The motor must be stopped before downloading begins.
Downloading takes approx. 30 seconds.
**** Top left hand segment in display flashes
—
On right
On left
Reverse
On
On
On
Jog right
Jog left
(USS, Profiand CANbus)
Reset on rising edge
Increase
Decrease
Analogue disabled
‘P’ disabled
G85139-H1751-U529-D1
4/8/99 50
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function
P056
Digital input debounce time
P057
Digital Input Watchdog Trip
(seconds)
English
Range
[Default]
Description / Notes
0 — 2
[0]
0.0-650.0
[1.0]
FF5 (P046)
FF6 (P047)
FF7 (P048)
FF8 (P049)
FF1 (P041)
FF2 (P042)
FF3 (P043)
FF4 (P044)
Binary Coded Fixed Frequency Mapping
DIN3 (P053)
0
0
1
1
0
0
1
1
DIN4 (P054)
0
0
1
1
0
0
1
1
DIN5 (P055)
0
1
0
1
0
1
0
1
Note: If P051 or P052 = 6 or 18 while P053 or P054 or P055 = 17 then the setpoints are added.
Examples: (1) P053 = 17, P054 = 17, P055 = 17:
All 8 fixed frequencies are available e.g. DIN3 = 1, DIN4 = 1, DIN5 = 0
⇒
FF3 (P043)
(2) P053
≠
17, P054 = 17, P055 = 17:
DIN3 is fixed at zero (only FF5 to FF8 available) e.g. DIN4 = 1, DIN5 = 0
⇒
FF7 (P048)
0 = 12.5 ms
1 = 7.5 ms
2 = 2.5 ms
Time interval between expected ‘Watchdog kicks’ or if this time interval should lapse without a pulse on one of the digital inputs, an F057 trip will occur.
(See P051 to P055 and P356)
© Siemens plc 1999
51
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P061
Selection relay output RL1
P062
Selection relay output RL2.
P063
External brake release delay
(seconds)
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 13
[6]
0 — 13
[8]
0 — 20.0
[1.0]
Sets the relay function, output RL1 (terminals 18,19 and 20)
Value Relay function Active
3
2
3
4
5
0
1
No function assigned (relay not active)
Inverter is running
Inverter frequency 0.0 Hz
Motor running direction right
Low
High
Low
High
8
9
6
7
External brake on (see parameters P063/P064) Low
Inverter frequency greater than minimum frequency High
Fault indication
1
Low
Inverter frequency greater than or equal to setpoint High
Warning active
2
Output current greater than or equal to P065
10
Motor current limit (warning)
2
11
Motor over temperature (warning)
2
12
PID closed loop motor LOW speed limit
Low
High
Low
Low
High
13
PID closed loop motor HIGH speed limit High
1
Inverter switches off (see parameter P930 and P140 to P143 and
section 7).
2
3
Inverter does not trip(see parameter P931).
‘Active low’ = relay OFF/ de-energised or ‘Active high’ = relay ON/ energised
Note:
If the external brake function is used (P061 or P062 = 4) and additional slip compensation is used (P071
≠
0), minimum frequency must be less than 5 Hz (P012 < 5.00), otherwise the inverter may not switch off.
Warning:Relay operation is not defined during parameter changes and may change unpredictably.
Ensure any equipment connected to the relays will remain safe if the relays change state during parameterisation.
Sets the relay function, output RL2 (terminals 21and 22) (refer to the
table in P061).
Only effective if the relay output is set to control an external brake
(P061 or P062 = 4). In this case when the inverter is switched on, it will run at the minimum frequency for the time set by this parameter before releasing the brake control relay and ramping up (see illustration in
P064).
G85139-H1751-U529-D1
4/8/99 52
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function
P064
External brake stopping time
(seconds)
English
Range
[Default]
Description / Notes
0 — 20.0
[1.0]
As P063, only effective if the relay output is set to control an external brake. This defines the period for which the inverter continues to run at the minimum frequency after ramping down and while the external brake is applied.
f ON OFF f min t
P063
A
B t t
P064
A
A = Brake applied
B = Brake removed
P065
Current threshold for relay (A) 0.0-300.0
[1.0]
P066
P069
P070
Compound braking
Ramp extension disable
Braking Resistor Duty Cycle
(MMV only)
0 — 250
[0]
0 — 1
[1]
0 — 4
[0]
Notes: (1) Settings for P063 and P064 should be slightly longer than the actual time taken for the external brake to apply and release respectively
(2) Setting P063 or P064 to too high a value, especially with P012 set to a high value, can cause an overcurrent warning or trip as the inverter attempts to turn a locked motor shaft.
This parameter is used when P061 or P062 = 9. The relay switches on when the motor current is greater than the value of P065 and switches off when the current falls to 90% of the value of P065 (hysteresis).
0 = Off
1 to 250 = Defines the level of DC superimposed on the AC waveform, expressed as a percentage of P083. Generally, increasing this value improves braking performance, however, with 400V inverters, a high value in this parameter could cause F001 trips.
Note: Compound braking does not operate in Sensorless Vector control mode (P077=3).
0 — Ramp extension disabled.
1 — Ramp extension enabled. Ramp time is increased during current limit, overvoltage limit and slip limit to prevent tripping.
Note: Ramp extension does not occur when in vector control (P077=3).
0 = 5%
1 = 10%
2 = 20%
3 = 50%
4 = 100% (i.e. continuous)
WARNING: Standard braking resistors for the MICROMASTER
Vector are designed for the 5% duty cycle only. Do not select higher duty cycles unless suitably rated resistors are being used to handle the increased power dissipation. The maixmum on time for values 0 to 3 is limited according to the brake resistor thermal capacity. Limit is 12 seconds for
5%, increasing to 25 seconds for 50%.
© Siemens plc 1999
53
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P071
•
Slip compensation (%)
P072
•
Slip limit (%)
P073
•
DC injection braking (%)
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 200
[0]
0 — 500
[250]
0 — 200
[0]
The inverter can estimate the amount of slip in an asynchronous motor at varying loads and increase its output frequency to compensate. This parameter ‘fine tunes’ the compensation for different motors in the range 0 — 200% of the calculated slip.
Note: This feature is not active and is not necessary when in
Sensorless Vector Control (P077=3).
WARNING: This parameter must be set to zero when using synchronous motors or motors that are connected in parallel or over-compensation can cause instability.
0 — 499 — This limits the slip of the motor to prevent ‘pull-out’ (stalling), which can occur if slip is allowed to increase indefinitely.
When the slip limit is reached, the inverter reduces frequency to keep the level of slip below this limit.
500 — Disables slip limit warning
This rapidly stops the motor by applying a DC braking current and holds the shaft stationary until the end of the braking period. Additional heat is generated within the motor. Braking is effective for the period of time set by P003.
The DC brake can be activated using DIN1 to DIN6 (see P051 to P055
and P356).
WARNING: Frequent use of long periods of dc injection braking can cause the motor to overheat.
If DC injection braking is enabled via a digital input then DC current is applied for as long as the digital input is high. This causes heating of the motor.
G85139-H1751-U529-D1
4/8/99 54
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function
P074
•
I
2 t motor protection
English
Range
[Default]
Description / Notes
0 — 7
[1]
Selects the most appropriate curve for the motor derating at low frequencies due to the reduced cooling effect of the shaft mounted cooling fan.
P074 = 0/4 P074 = 1/5 P074 = 3/7 P074 = 2/6
100% I
N
50% I
N
P075
•
Braking chopper enable
(MMV only)
0 — 1
[0]
50% F
N
100% F
N
150% F
N
I
N
= Nominal motor current (P083)
F
N
= Nominal motor frequency (P081)
0 = No derating. Suitable for motors with separately powered cooling or no fan cooling which dissipate the same amount of heat regardless of speed.
1 = For 2 or 4-pole motors which generally have better cooling due to their higher speeds. The inverter assumes that the motor can dissipate full power at ò 50% nominal frequency.
2 = Suitable for special motors not continuously rated at nominal current at nominal frequency..
3 = For 6 or 8-pole motors. The inverter assumes that the motor can dissipate full power at ò nominal frequency.
4 = As P074 = 0 but the inverter trips (F074) instead of reducing the motor torque / speed.
5 = As P074 = 1 but the inverter trips (F074) instead of reducing the motor torque / speed.
6 = As P074 = 2 but the inverter trips (F074) instead of reducing the motor torque / speed.
7 = As P074 = 3 but the inverter trips (F074) instead of reducing the motor torque / speed.
Note:I
2 t motor protection is not recommended where the motor is less than half the power rating of the inverter.
0 = An external braking resistor is not connected.
1 = An external braking resistor is connected.
An external braking resistor can be used to ‘dump’ the power generated by the motor, thus giving greatly improved braking and deceleration capabilities. It MUST be greater than 40
Ω
(80
Ω
for 3 AC
400 V inverters) or the inverter will be damaged. Purpose made resistors are available to cater for all MICROMASTER Vector variants.
WARNING: Take care if an alternative resistor is to be used as the pulsed voltage applied by the inverter can destroy ordinary resistors.
© Siemens plc 1999
55
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P076
•
Pulse frequency
G85139-H1751-U529-D1
4/8/99
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 7
[0 or 4]
Sets the pulse frequency (from 2 to 16 kHz) and the PWM mode. If silent operation is not absolutely necessary, the losses in the inverter as well as the RFI emissions can be reduced by selecting lower pulse frequencies.
0/1 = 16 kHz (230 V default)
2/3 = 8 kHz
4/5 = 4 kHz (400 V default)
6/7 = 2 kHz
Even numbers = normal modulation technique.
Odd numbers = lower loss modulation technique used when operating mainly at speeds above 5 Hz.
Due to higher switching losses at increased switching frequencies, certain inverters may have their maximum continuous current (100%) derated if the value of P076 is changed from the default value
MDV550/2
MDV750/2
MDV1100/2
MDV1500/2
MDV1850/2
MDV2200/2
MDV750/3
MDV1100/3
MDV1500/3
MDV1850/3
MDV2200/3
MDV3000/3
MDV3700/3
MDV550/4
MDV750/4
MDV1100/4
MDV1500/4
MDV1850/4
Model
MMV75/3
MMV110/3
MMV150/3
MMV220/3*
MMV300/3*
MMV400/3*
MMV550/3*
MMV750/3*
% of full load de-rating
P076 =0 or 1 P076 =2 or 3
80
50
50
80
50
50
50
50
100
80
80
100
80
80
80
80
* Derating applies to filtered units MMVXXX/3F as well
Model % of full load de-rating
P076 =0 or 1 P076 =2 or 3
47
43
38
55
64
55
90
90
75
80
79
68
57
50
64
55
50
47
40
75
55
39
64
55
90
83
90
75
90
88
75
100
100
75
90
75
© Siemens plc 1999
56
6. SYSTEM PARAMETERS
Parameter Function
P077
Control mode
P078
•
Continuous boost (%)
P079
•
MMV
MDV (P077=3)
MDV (P077=0, 1 or 2)
Starting boost (%)
English
Range
[Default]
Description / Notes
0 — 3
(1)
0 — 250
[100]
[100]
[50]
0 — 250
[0]
Note: If P076 = 4, 5, 6 or 7 then derating does not occur on the above inverters.
Note:
On 230V units of 30kW and above, 400V units of 45kW and above, and 575V units of 22kW and above, P076 can only be set to 4, 5, 6 or 7 (4kHz or 2kHz only).
The switching frequency will automatically be reduced if the inverter internal protection detects an excessive heat sink temperature. The switching frequency will automatically be returned to the setting once this temperature returns to normal.
Controls the relationship between the speed of the motor and the voltage supplied by the inverter. One of four modes can be selected:
0 = V/f curve
1 = FCC control
2 = Quadratic V/f
3 = Vector Control
Note: When Sensorless Vector Control is selected (P077 = 3), P088 will automatically be set to 1, so that on first run-up, the inverter will measure the stator resistance of the motor and calculate motor constants from the rating plate data in P080 to P085.
For many applications it is necessary to increase low frequency torque.
This parameter sets the start-up current at 0 Hz to adjust the available torque for low frequency operation. 100% setting will produce rated motor current (P083) at low frequencies.
WARNING: If P078 is set too high, overheating of the motor and/or an overcurrent trip (F002) can occur.
For drives which require a high initial starting torque, it is possible to set an additional current (added to the setting in P078) during ramp duration (P002). This is only effective during initial start up and until the frequency setpoint is reached.
WARNING: This increase is in addition to P078, but the total is limited to 250%.
© Siemens plc 1999
57
G85139-H1751-U529-D1
4/8/99
English
Parameter Function Range
[Default]
Description / Notes
6. SYSTEM PARAMETERS
P080
P081
Nominal rating plate frequency for motor (Hz)
P082
Nominal rating plate speed for motor (RPM)
P083
Nominal rating plate motor power factor (cos ϕ
)
Nominal rating plate current for motor (A)
0.00-1.00
[¶¶¶]
If efficiency is shown on the motor rating plate, calculate the power factor as follows: pf = hp x 746
1.732 x efficiency x nom. volts x nom. amps
If neither power factor nor efficiency are shown on the motor rating plate — set P080 = 0.
0 — 650.00
[50.00]
0 — 9999
[¶¶¶]
0.1-300.0
[¶¶¶]
Notes:
1 These parameters P080 to P085 must be set for the particular motor used. Read the figures from the motor rating plate (
see Figure 4.2..1
).
2 It will be necessary to perform an automatic calibration
(P088 = 1)
if
P080 to P085 are changed from their factory default settings.
P084
Nominal rating plate voltage for motor (V)
P085
Nominal rating plate power for motor (kW)
P086
•
Motor current limit (%)
P087
P088
P089
P091
•
•
•
Motor PTC enable
Automatic calibration
Stator resistance (
Ω
)
Serial link slave address
0 — 1000
[¶¶¶]
0.12-250.00
[¶¶¶]
3 When the inverter is set-up for North American operation (P101=1);
P081 will default to 60Hz and P085 will indicate hp (0.16 — 250)
0 — 250
[150]
0 — 1
[0]
0 — 1
[0]
0.01-199.99
[¶¶¶]
0 — 30
[0]
Defines the motor overload current as a % of the Nominal motor current (P083) allowed for up to one minute.
With this parameter and P186, the motor current can be limited and overheating of the motor prevented. If the value set in P083 is exceeded for one minute, (or longer if the overload is small) , the output frequency is reduced until the current falls to that set in P083.
The inverter display flashes as a warning indication but the inverter does not trip. The inverter can be made to trip using P074.
Note: The maximum value that P086 can be set to is automatically limited by the rating of the inverter.
0 = Disabled
1 = External PTC enabled
Note:
If motor thermal protection is required, then an external PTC must be used and P087 = 1. If P087 = 1 and the PTC input goes high then the inverter will trip (fault code F004 displayed).
The motor stator resistance is used in the inverter’s internal current monitoring calculations. When P088 is set to ‘1’ and the RUN button is pressed, the inverter performs an automatic measurement of motor stator resistance; stores it in P089 and then resets P088 to ‘0’.
If the measured resistance is too high for the size of inverter (e.g.
motor not connected or unusually small motor connected), the inverter will trip (fault code F188) and will leave P088 set to ‘1’. If this happens, set P089 manually and then set P088 to ‘0’.
Can be used instead of P088 to set the motor stator resistance manually. The value entered should be the resistance measured across any two motor phases.
WARNING: The measurement should be made at the inverter terminals with power off and cold motor.
Note:
If the value of P089 is too high then an overcurrent trip(F002) may occur.
Up to 31 inverters can be connected via the serial link and controlled by a computer or PLC using the USS serial bus protocol. This parameter sets a unique address for the inverter.
G85139-H1751-U529-D1
4/8/99 58
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function Range
[Default]
Description / Notes
English
P092
P093
P094
P095
P099
P101
•
•
•
•
•
•
P111
Inverter power rating (kW/hp) 0.12- 75.00
[¶¶¶]
P112
P113
© Siemens plc 1999
Serial link baud rate
Serial line time-out (seconds)
Serial link nominal system setpoint (Hz)
USS compatibility
Option module type
Operation for Europe or North
America
Inverter type
Drive model
3 — 7
[6]
0 — 240.
[0]
0 — 650.00
[50.00]
0 — 2
[0]
0 — 2
[0]
0 — 1
[0]
1 — 8
[¶¶¶]
0 — 29
[¶¶¶]
Sets the baud rate of the RS485 serial interface (USS protocol):
3 = 1200 baud
4 = 2400 baud
5 = 4800 baud
6 = 9600 baud
7 = 19200 baud
Note:
Some RS232 to RS485 converters are not capable of baud rates higher than 4800.
This is the maximum permissible period between two incoming data telegrams. This feature is used to turn off the inverter in the event of a communications failure.
Timing starts after a valid data telegram has been received and if a further data telegram is not received within the specified time period, the inverter will trip and display fault code F008.
Setting the value to zero switches off the control.
Setpoints are transmitted to the inverter via the serial link as percentages. The value entered in this parameter represents 100%
(HSW = 4000H).
0 =
1 =
2 =
Compatible with 0.1 Hz resolution
Enable 0.01 Hz resolution
HSW is not scaled but represents the actual frequency value to a resolution of 0.01 Hz (e.g. 5000 = 50 Hz).
0 =
1 =
2 =
Option module not present
PROFIBUS module (enables parameters relating to
PROFIBUS)
CANbus module (enables parameters relating to CANbus)
This sets the inverter for European or North America supply and nominal rating plate frequency for the motor to:
0 = Europe (50 Hz and power ratings to kW)
1 = North America (60 Hz and power ratings to hp)
Note: After setting P101 =1 the inverter must be re-set to factory defaults, i.e. P944 = 1 to automatically set P013 = 60Hz, P081=
60Hz, P082 = 1680rpm P085 will be displayed in hp.
Read-only parameter that indicates the power rating of the inverter in kW. e.g. 0.55 = 550 W
Note:
If P101 = 1 then the rating is displayed in hp.
Read-only parameter.
1 = MICROMASTER 2nd Generation (MM2)
2 = COMBI MASTER
3 = MIDIMASTER
4 = MICROMASTER Junior (MMJ)
5 = MICROMASTER 3rd Generation (MM3)
6 = MICROMASTER Vector (MMV)
7 = MIDIMASTER Vector (MDV)
8 = COMBIMASTER 2nd Generation.
Read-only parameter; indicates the Vector model number according to the type range indicated by P112.
P113 P112 =
6
2
3
0
1
MMV12
MMV25
MMV37
MMV55
P112 =
7
P113 P112 = 6
MDV550/2
MDV750/2
15
16
MDV1100/2
17
MDV1500/2
18
MMV110/2
MMV150/2
MMV220/2
MMV300/2
P112 = 7
MDV3000/3
MDV3700/3
MDV4500/3
MDV5500/3
59
G85139-H1751-U529-D1
4/8/99
English
Parameter Function Range
[Default]
Description / Notes
6. SYSTEM PARAMETERS
10
11
12
13
14
6
7
4
5
8
MMV75 MDV1850/2
19
MMV110 MDV2200/2
20
MMV150 MDV3000/2
21
MMV220 MDV3700/2
22
MMV300 MDV4500/2
23
MMV12/2 MDV750/3
24
25
MMV25/2 MDV1100/3
26
MMV37/2 MDV1500/3
27
MMV55/2 MDV1850/3
28
MMV75/2 MDV2200/3
29
MMV400/2 MDV7500/3
MMV37/3
MMV55/3
MDV220/4
MDV400/4
MMV75/3 MDV550/4
MMV110/3 MDV750/4
MMV150/3 MDV1100/4
MMV220/3 MDV1500/4
MMV300/3 MDV1850/4
MMV400/3 MDV2200/4
MMV550/3 MDV3000/4
MMV750/3 MDV3700/4
P121
P122
Enable/disable
FORWARD/REVERSE button
P123
Enable/disable RUN button
Enable/disable JOG button
0 — 1
[1]
0 — 1
[1]
0 — 1
[1]
P124
Enable/disable
∆
and
∇
buttons 0 — 1
[1]
0 = RUN button disabled
1 = RUN button enabled (only possible if P007 = 1)
0 = FORWARD/REVERSE button disabled
1 = FORWARD/REVERSE button enabled (only possible if P007 = 1)
0 = JOG button disabled
1 = JOG button enabled (only possible if P007 = 1)
0 =
∆
and
∇
buttons disabled
1 =
∆
and
∇
buttons enabled (only possible if P007 = 1)
Note: This applies for frequency adjustment only. The buttons can still be used to change parameter values.
P125
Reverse direction inhibit 0 — 1
[1]
P128
Fan switch-off delay time
(seconds) (MMV only)
0 — 600
[120]
P131
Frequency setpoint (Hz) 0.00-650.00
[-]
P132
Motor current (A) 0.0 — 300.0
[-]
P133
Motor torque (% nominal torque) 0 — 250
[-]
P134
DC link voltage (V) 0 — 1000
[-]
P135
Motor RPM 0 — 9999
[-]
P137
Output voltage (V) 0 — 1000
[-]
P138
Instantaneous rotor / shaft frequency (Hz)(Vector mode only)
0 — 650
[-]
P139
Peak output current detect 0.0 — 99.9
[-]
This parameter can be used to prevent the inverter from running a motor in the reverse direction.
0 = Reverse direction disabled. Inhibits reverse commands from ALL sources (e.g. front panel, digital, analogue, etc.). All negative RUN commands (e.g. ON left, JOG left, REVERSE, etc.) result in
FORWARD rotation. Any negative result of setpoint addition is clipped at 0 Hz.
1 = Normal operation. Forward and reverse direction of rotation allowed.
Time taken for the fan to switch off following an OFF command.
Read-only parameters. These are copies of the values stored in P001 but can be accessed directly via the serial link.
Stores the peak current seen by the motor. Can be reset using
∆
and
∇ buttons.
G85139-H1751-U529-D1
4/8/99 60
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function
P140
Most recent fault code
English
Range
[Default]
Description / Notes
0 — 255
[-]
Read only. The last recorded fault code (see section 7) is stored in this parameter. The stored value can be cleared by using the
∆
and
∇ buttons. Or by resetting to factory defaults (P944)
P141
P142
P143
P186
•
Motor instantaneous current limit
(%)
P201
P202
P203
P207
P208
P210
P211
P212
P220
•
•
•
•
•
Most recent fault code -1
Most recent fault code -2
Most recent fault code -3
PID closed loop mode
P gain
I gain
P204
•
D gain
P205
•
Sample interval (x 25 ms)
P206
•
Transducer filtering
Integral capture range (%)
Transducer type
Transducer reading (%)
0% setpoint
100% setpoint
Frequency cut-off.
0 — 255
[-]
0 — 255
[-]
0 — 255
[-]
0 — 500*
(200)
This is a copy of the code stored in P930.
Read only. This parameter stores the last recorded fault code prior to that stored in P140/P930.
Read only. This parameter stores the last recorded fault code prior to that stored in P141.
Read only. This parameter stores the last recorded fault code prior to that stored in P142.
This parameter defines the instantaneous motor current limit as a % of the nominal motor current (P083). If the output current reaches this limit for three seconds, the inverter automatically reduces the current to the limit set in P086.
Note: * The maximum value that can be set for P186 is automatically limited by the rating of the inverter.
Torque limit operation is available, from 5Hz to 50Hz, when using
Vector Control mode (P077=3). The motor torque produced is a function of motor current. If P186 and P086 are equal, the current limit function can effectively be used as a torque limit.
0 = Normal operation (closed loop process control disabled).
1 = Closed loop process control using analogue input 2 as feedback.
Proportional gain.
0 — 1
[0]
0.0-999.9
[1.0]
0.00-99.9
[0]
0.0-999.9
[0]
1 — 2400
[1]
0 — 255
[0]
0 — 100
[100]
0 — 1
[0]
Integral gain.
0.01% corresponds to the longest integral action time.
Derivative gain.
Sampling interval of feedback sensor. The integral response rate is slowed down by this factor
0 =
Filter off.
1 — 255 = Low pass filtering applied to transducer.
Percentage error above which integral term is reset to zero.
0.00-100.00
[-]
0 = An increase in motor speed causes an increase in transducer voltage/current output.
1 = An increase in motor speed causes an decrease in transducer voltage/current output..
Read-only. Value is a percentage of full scale of the selected signal input
(i.e. 10 V or 20 mA).
Value of P210 to be maintained for 0% setpoint.
0.0 — 100.00
[0.0]
0.0 — 100.00
[100.00]
0 — 1
[0]
Value of P210 to be maintained for 100% setpoint.
0 = Normal operation.
1 = Switch off inverter output at or below minimum frequency.
Note: Active in all modes.
© Siemens plc 1999
61
G85139-H1751-U529-D1
4/8/99
English
Parameter Function Range
[Default]
Description / Notes
6. SYSTEM PARAMETERS
P321
•
Minimum analogue frequency for analogue setpoint 2 (Hz)
P322
•
Maximum analogue frequency for analogue setpoint 2 (Hz)
0 — 650.00
[0.00]
0 — 650.00
[50.00]
Frequency corresponding to the lowest analogue input value, i.e.
0 V/0 mA or 2 V/4 mA, determined by P323 and the settings of the DIP selector switches 4 and 5 (see Section 4.1.2). This can be set to a higher value than P322 to give an inverse relationship between analogue input and frequency output (see diagram in P322).
Frequency corresponding to the highest analogue input value, i.e.
10 V or 20 mA, determined by P323 and the setting of the DIP selector switches 4 and 5 (see Section 4.1.2).. This can be set to a lower value than P321 to give an inverse relationship between analogue input and frequency output.
f P322
P321
P323
P356
•
Analogue input 2 type
Digital input 6 configuration
P386
Sensorless vector speed control loop gain — proportional term
P387
Sensorless vector speed control loop gain — integral term
0 — 2
[0]
0 — 24
[6]
0.1 — 20.0
[1.0]
0.01- 10.0
[1.0]
P322
P321
V/ I
Sets analogue input type for analogue input 2, in conjunction with the settings of the DIP selector switches 4 and 5 (see, Section 4.1.2) :
0 = 0 V to 10 V/ 0 to 20 mA Unipolar input
1 = 2 V to 10 V/ 4 to 20 mA Unipolar input
2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start / stop when using analogue input control.
Note:
Setting P323 = 2 will not work unless the inverter is under full local control (i.e. P910 = 0 or 4) and V
≥
1 V or 2mA.
WARNING:The inverter will automatically start when voltage goes above 1V or 2mA. This equally applies to both analogue and digital control (i.e. P006 = 0 or 1)
Control function selection, DIN 6
See P051 — P055 for description.
To optimise the dynamic performance of the vector control this parameter should be incremented whilst the inverter is operating under typical conditions until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 10%) until stability is restored. In general, the optimum setting required will be proportional to the load inertia. If this setting is too low or too high, rapid load changes may result in DC link overvoltage trips (F001) and/or unstable vector control.
See section 5.3.3 for further information .
Note: P386 = Load inertia + motor shaft inertia
motor shaft inertia
P386 must be optimised before adjusting P387. Whilst operating the inverter under typical conditions, increment this parameter until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 30%) until stability is restored.
See section 5.3.3 for further information.
P700
P701
•
P702
Specific to PROFIBUS-DP. See PROFIBUS Handbook for further details. Access only possible with P099 = 1
G85139-H1751-U529-D1
4/8/99 62
© Siemens plc 1999
6. SYSTEM PARAMETERS
Parameter Function Range
[Default]
Description / Notes
English
P720
•
Direct input/output functions 0 — 7
[0]
Allows direct access to the relay outputs and the analogue output via the serial link (USS or PROFIBUS-DP with module):
0 = Normal operation
1 = Direct control of relay 1
2 = Direct control of relay 2
3 = Direct control of relay 1 and relay 2
4 = Direct control of analogue output 1 only
5 = Direct control of analogue output 1 and relay 1
6 = Direct control of analogue output 1 and relay 2
7 = Direct control of analogue output 1, relay 1 and relay 2
Read only. Displays the analogue input 1 voltage (approximate).
P721
P722
P723
State of digital inputs
P724
P725
P726
P880
P910
P922
P923
P930
•
•
P900 to
P970
•
•
Analogue input 1 voltage (V)
Analogue output 1 current (mA)
Relay output control
Analogue input 2 voltage (V)
Analogue output 2 current (mA)
(MDV only)
(Other than those listed below)
Local / USS mode
Software version
Equipment system number
Most recent fault code
0.0 — 10.0
[-]
0.0 — 20.0
[0.0]
0 — 3F
[-]
0 — 3
[0]
0.0-10.0
[-]
0.0-20.0
[0.0]
0 — 4
[0]
0.00 — 99.99
[-]
0 — 255
[0]
0 — 255
[-]
Allows direct control of the output current over the serial link if P720 =
4, 5, 6 or 7.
Read-only. Provides a HEX representation of a 6-digit binary number of which the LSB = DIN1 and the MSB = DIN6 (1 = ON, 0 = OFF).
e.g. If P723 = B, this represents ‘001011’ — DIN1, DIN2 and DIN4
= ON, DIN3 , DIN5 and DIN6 = OFF.
Enables control of the output relays. Used in conjunction with P720, e.g. setting P724 = 1 (relay 1 = ON) has no effect unless P720 = 1, 3,
5,or 7.
0 = Both relays OFF / de-energised
1 = Relay 1 ON / energised
2 = Relay 2 ON / energised
3 = Both relays ON / energised
Read only. Displays the analogue input 2 voltage (approximate) only when analogue input 2 is active (P051 to P055 or P356 = 24 and the respective digital input is high).
Allows direct control of the analogue output 2 current over the serial link if P720 = 4, 5, 6 or 7.
Specific to PROFIBUS-DP. See PROFIBUS Handbook for further details. Access only possible with P099 = 1
Specific to PROFIBUS-DP and CANbus operation. See PROFIBUS or CANbus Handbook for further details.
Access only possible with P099 = 1 or 2
Sets the inverter for local control or USS control over the serial link:
0 = Local control
1 = USS control (and setting of parameter values)
2 = Local control (but USS control of frequency)
3 = USS control (but local control of frequency)
4 = Local control (but USS read and write access to parameters and facility to reset trips)
Note:
When operating the inverter via USS control (P910 = 1 or 2 ), the analogue input remains active when P006 = 1 and is added to the setpoint.
Contains the software version number and cannot be changed.
You can use this parameter to allocate a unique reference number to the inverter. It has no operational effect.
See Parameter 140
© Siemens plc 1999
63
G85139-H1751-U529-D1
4/8/99
English
Parameter Function
P931
P944
Reset to factory default settings
P971
•
Most recent warning type
EEPROM storage control
6. SYSTEM PARAMETERS
Range
[Default]
Description / Notes
0 — 99
[-]
0 — 1
[0]
0 — 1
[1]
Read only. The last recorded warning is stored in this parameter until power is removed from the inverter. This can be cleared by using the and
∇
buttons.
∆
See section 7.2 for explanation of warning codes
Set to ‘1’ and then press P to reset all parameters except P101 to the factory default settings. Previously set parameters will be overwritten including the motor parameters P080 — P085 (See section 4.2)
0 = Changes to parameter settings (including P971) are lost when power is removed.
1 = Changes to parameter settings are retained during periods when power is removed.
IMPORTANT: When using the serial link to update the parameter set held in EEPROM, care must be taken not to exceed the maximum number of write cycles to this EEPROM — this is approximately 50,000 write cycles. Exceeding this number of write cycles would result in corruption of the stored data and subsequent data loss. The number of read cycles are unlimited.
G85139-H1751-U529-D1
4/8/99 64
© Siemens plc 1999
7. FAULT AND WARNING CODES English
7. FAULT AND WARNING CODES
7.1 Fault Codes
In the event of a fault, the inverter switches off and a fault code appears on the display. The last fault that occurred is stored in parameter P140, the preceding faults in P141 — P143.. e.g. ‘0004’ indicates that the last fault was F004
Fault Code Cause Corrective Action
F001
Overvoltage
F004
Overheating of motor
(monitoring with PTC)
Check whether supply voltage is within the limits indicated on the rating plate.
Increase the Ramp-down time (P003) or apply braking resistor (option).
Check whether the required braking power is within the specified limits.
F002
F003
Overcurrent
Overload
Check whether the motor power corresponds to the inverter power.
Check that the cable length limits have not been exceeded.
Check motor cable and motor for short-circuits and earth faults.Check
whether the motor parameters (P080 — P085) correspond with the motor being used.
Check the stator resistance (P089).
Increase the ramp-up time (P002).
Reduce the boost set in P078 and P079.
Check whether the motor is obstructed or overloaded.
Check whether the motor is overloaded.
Increase the maximum motor frequency if a motor with high slip is used.
Check if motor is overloaded.
Check the connections to the PTC.
Check that P087 has not been set to 1 without a PTC being connected.
F005
Inverter overtemperature
(internal heatsink sensor)
Check that the ambient temperature is not too high.
Check that the air inlet and outlet are not obstructed.
Check that the inverter’s integral fan is working
F008
USS protocol time-out
Check the serial interface.
Check the settings of the bus master and P091 — P093.
Check whether the time-out interval is too short (P093).
F009
Undervoltage
Check whether the supply voltage is within the limits indicated on the rating plate.
Check the supply is not subject to temporary failures or voltage reductions.
F010
Initialisation fault
F011
Internal interface fault
1
Check the entire parameter set. Set P009 to `0000′ before power down.
Switch off power and switch on again.
F012
External trip
Source of trip is digital input (configured as an external trip input) going low
— check the external source.
F013
Programme fault
1
Switch off power and switch on again.
F016
Sensorless vector control unstable Try calibrating the stator resistance (set P088 to 1 and RUN).
Alternatively try re-adjusting the sensorless vector control loop gain (see
P386).
F030
PROFIBUS link failure
Check the integrity of the link.
F031
PROFIBUS to inverter link failure
Check the integrity of the link.
F033
PROFIBUS configuration error
Check the PROFIBUS configuration.
F036
PROFIBUS module watchdog trip
Replace PROFIBUS module
F057
Delayed Trip (See P057)
P051 to P055 or P356 = 20 and trip input has remained low for longer than the time set in P057
F074
Motor overtemperature by I
2 t calculation
Trip occurs only if P074 = 4, 5, 6 or 7. Check that the motor current does not exceed the value set in P083 and P086.
F075
Over current during ramping down
Increase the ramp down time (P003).
F101
Internal interface fault
1
Switch off power and switch on again.
F105
Inverter overtemperature (internal sensor)
Check that the ambient temperature is not too high.
Check that the air inlet and outlet are not obstructed
Check that the inverter’s integral fan is working
© Siemens plc 1999
65
G85139-H1751-U529-D1
4/8/99
English
Fault Code
Cause
F106
Parameter fault P006
F112
Parameter fault P012/P013
F151-
F156
Digital input parameter fault
F188
Automatic calibration failure
7. FAULT AND WARNING CODES
Corrective Action
Parameterise fixed frequency(ies) on the digital inputs.
Set parameter P012 < P013.
Change the settings of digital inputs P051 to P055 and P356.
F201
P006 = 1 while P201 = 2
F212
Parameter fault P211/P212
F231
Output current measurement imbalance
F255
Watchdog Trip
Motor not connected to inverter — connect motor.
If the fault persists, set P088 = 0 and then enter the measured stator resistance of the motor into P089 manually.
Change parameter P006 and / or P201
Set parameter P211 < P212.
See F002
Remove prime power and re-apply
1
Ensure that the wiring guidelines described in section 1.2 have been complied with.
When the fault has been corrected the inverter can be reset. To do this press button P twice (once to display
P000 and the second time to reset the fault), or clear the fault via a binary input (see parameters P051 — P055
and P356 in section 6).
7.2 Warning Codes
In the event of a warning, the inverter display will flash. The last warning to occur is stored in parameter P931.
Warning Code Cause Corrective Action
002
Current limit active Check whether the motor power corresponds to the inverter power.
Check that the cable length limits have not been exceeded.
Check motor cable and motor for short-circuits and earth faults.
Check whether the motor parameters (P080 — P085) correspond with the motor being used.
Check the stator resistance (P089).
Increase the ramp-up time (P002).
Reduce the boost set in P078 and P079.
Check whether the motor is obstructed or overloaded.
Increase ramp time or fit breaking resistor
003
Voltage limit active
004
Slip limit exceeded
Check that motor is not overloaded, check motor parameters
005
Inverter overtemperature (heatsink) Check that the ambient temperature is not too high.
Check that the air inlet and outlet are not obstructed.
006
Motor over-temperature
Check that the inverter’s integral fan is working
Check if motor is overloaded.
Check that P087 has not been set to 1 without a PTC being connected.
010
15V power supply — current limit Check Connections
018
Auto re-start after fault (P018) is pending
075
Braking resistor — hot
WARNING: The inverter may start at any time.
G85139-H1751-U529-D1
4/8/99 66
© Siemens plc 1999
8. SPECIFICATIONS English
8. SPECIFICATIONS
230V Single Phase MICROMASTER Vector Inverters
Order No.(with built-in filter class A (6SE32)).
10-7BA40 11-5BA40 12-1BA40 12-8BA40 13-6BA40 15-2BB40 16-8BB40 21-0BC40 21-3BC40
Inverter model MMV12 MMV25 MMV37 MMV55 MMV75 MMV110 MMV150 MMV220
MMV300 c
Input voltage range
Motor output rating a (kW/hp)
Continuous output @ 230V
Output current (nom.) (A) a
0.12/ 1
0.75
/
6
350VA
0.25/ 1
/
3
660 VA
1.5
0.37/½
880 VA
2.1
1 AC 208V — 240 V +/-10%
0.55/¾ 0.75/ 1 1.1 / 1½
1.14 kVA
2.6
1.5 kVA
3.5
2.1 kVA
4.8
1.5 / 2
2.8 kVA
6.6
2.2 / 3
4.0 kVA
9.0
3.0/ 4
5.2kVA
11.8
Output current (max. continuous) (A)
Input current (max.) (A)
Recommended mains fuse(A)
Fuse order code
Recommended lead cross-section (min.)
Input
Output
0.9
1.8
1.7
3.2
10
3NA3803
1.0 mm 2
2.3
4.6
3.0
6.2
16
3NA3805
1.5 mm 2
3.9
8.2
5.5
11.0
20
3NA3807
7.4
14.4
2.5 mm 2
10.4
20.2
25
13.6
28.3
30
3NA3810 3NA3814
4.0 mm 2
1.0 mm 2 1.5 mm 2 2.5 mm 2
Dimensions (mm) (w x h x d) 73 x 175 x 141 149 x 184 x 172 185 x 215 x 195
Weight (kg / lb) 0.85 / 1.9
2.6 / 5.7
5.0 / 11.0
All 1 AC 230 V MICROMASTER Vector include integrated Class A filters. Optional external Class B filters are available (see section 9.3).
230 V 1/3 AC MICROMASTER Vector Inverters
Order No. (6SE32..)
Inverter model
Input voltage range
10-7CA40 11-5CA40 12-1CA40 12-8CA40 13-6CA40 15-2CB40 16-8CB40 21-0CC40 21-3CC40 21-8CC40
MMV12/2 MMV25/2 MMV37/2 MMV55/2 MMV75/2 MMV110/2 MMV150/2 MMV220/2 MMV300/2 c
MMV400/2
1 — 3 AC 208V — 240 V +/-10% 3 AC
0.12/
1
/
6
0.25/
1
/
3
0.37/½ 0.55/¾ 0.75/ 1 1.1 / 1½ 1.5 / 2 2.2 /3 3.0 / 4 4.0 /5
Motor output rating a(kW/hp)
Continuous output @ 230V
Output current (nom.) (A) a
Output current (max. continuous) (A)
Input current (I rms) (1 AC / 3
AC)
480VA 660 VA 880 VA 1.14 kVA 1.5 kVA 2.1 kVA 2.8 kVA 4.0 kVA 5.2 kVA 7.0kVA
0.8
1.5
2.1
2.6
3.5
4.8
0.9
1.7
2.3
3.0
3.9
5.5
1.8/1.1A
3.2/1.9A
4.6/2.7A
6.2/3.6A
8.2/4.7A 11.0/6.4
A
10 16
6.6
7.4
14.4/8.3
A
20
9.0
11.8
10.4
13.6
20.2/11.7A 28.3/16.3
A
25 30
15.9
17.5
-/21.1 A
Recommended mains fuse(A) b
25
Fuse order code
Recommended lead cross-section (min.)
Input
3NA3803
1.0 mm
2
3NA3805
1.5 mm
2
3NA3807 3NA3810
2.5 mm
2
3NA3814 3NA3810
4.0 mm
Output 1.0 mm 2 1.5 mm 2 2.5 mm 2
Dimensions (mm) (w x h x d)
Weight (kg / lb)
73 x 175 x 141
0.75 / 1.7
149 x 184 x 172
2.4 / 5.3
185 x 215 x 195
4.8 / 10.5
All 1 AC and 3 AC 230 V MICROMASTERS (excluding MMV400/2) are suitable for 208 V operation.
All 3 AC 230 V MICROMASTER Vector can operate on 1 AC 230 V (MMV300/2 requires an external line choke, e.g. 4EM6100-3CB).
2
380 V — 500 V Three Phase MICROMASTER Vector Inverters
Order No. (6SE32..)
Inverter model
Input voltage range
11-1DA40 11-4DA40 12-0DA40 12-7DA40 14-0DA40 15-8DB40 17-3DB40 21-0DC40 21-3DC40 21-5DC40
MMV37/3 MMV55/3 MMV75/3 MMV110/3 MMV150/3 MMV220/3 MMV300/3 MMV400/3 MMV550/3 MMV750/3
3 AC 380 V — 500 V +/-10%
0.37 /½ 0.55 / ¾ 0.75 / 1 1.1 /1½ 1.5 / 2 2.2 / 3 3.0 / 4 4.0 / 5 5.5 / 7½ 7.5 / 10
Motor output rating a (kW/ hp)
Continuous output @ 400V a
Output current (nom.) (A)
Output current (max. continuous) (A)*
Input current (max.) (A)
Recommended mains fuse(A)
Fuse order code
Recommended lead cross-section (min.)
Input
Output
930VA 1180VA 1530VA 2150VA 2.8 kVA 4.0 kVA 5.2 kVA 7.0 kVA 9.0 kVA 12.1 kVA
1.2
1.2
2.2
1.5
1.6
2.8
2.0
2.1
3.7
10
3NA3803
1.0 mm 2
2.8
3.0
4.9
3.7
4.0
5.9
1.5 mm 2
5.2
5.9
8.8
16
3NA3805
6.8
7.7
11.1
9.2
10.2
13.6
20
3NA3807
11.8
13.2
17.1
2.5 mm 2
15.8
17.5
22.1
25
3NA3810
4.0 mm 2
1.0 mm
2
1.5 mm
2
Dimensions (mm) (w x h x d)
Weight (kg / lb)
73 x 175 x 141
0.75 / 1.7
149 x 184 x 172
2.4 / 5.3
185 x 215 x 195
4.8 / 10.5
Optional external Class A and Class B filters are available (see section 9.3).
.
a
Notes:
b
Siemens 4 pole-motor, 1LA5 series or equivalent.
Assumes 3-phase supply. If a single phase supply is used, the input current ratings, wire sizes and fuses for single phase
2.5 mm
2
c
MMV300 and MMV300/2 require an external choke (e.g. 4EM6100-3CB) and a 30 A mains fuse to operate on a single phase supply.
*
Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.
© Siemens plc 1999
67
G85139-H1751-U529-D1
4/8/99
English 8. SPECIFICATIONS
380 V — 480 V Three Phase MICROMASTER Vector Inverters with built-in Class A filter
Order No. (6SE32..)
Inverter model
Input voltage range
15-8DB50 17-3DB50 21-0DC50
MMV220/3F MMV300/3F MMV400/3F
3 AC 380 V — 480 V +/-10%
2.2 / 3 3.0 / 4 4.0 / 5
21-3DC50
MMV550/3F
Motor output rating a (kW/ hp)
5.5 / 7½
Continuous output @ 400V a
Output current (nom.) (A)
Output current (max. continuous) (A)*
Input current (max.) (A)
Recommended mains fuse(A)
Fuse order code
Recommended lead cross-section (min.)
Input
Output
4.0 kVA
5.2
5.9
8.8
16
1.5 mm
2
3NA3805
5.2 kVA
6.8
7.7
11.1
7.0 kVA
1.0 mm 2
Dimensions (mm) (w x h x d) 149 x 184 x 172
Weight (kg / lb) 2.4 / 5.3
Class B may be achieved by adding a Class B footprint filter to an unfiltered inverter
9.2
10.2
13.6
20
2.5 mm
2
3NA3807
9.0 kVA
11.8
13.2
17.1
1.5 mm 2
185 x 215 x 195
4.8 / 10.5
21-5DC50
MMV750/3F
7.5 / 10
12.1 kVA
15.8
17.0
22.1
25
3NA3810
4.0 mm
2
2.5 mm 2
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP20 / NEMA 1 with integrated filter
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
Motor output rating (kW/hp)
Continuous output (kVA) @230V
Output current (max. continuous) (A)
Input current (max.) (A)
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm
2
)
Input (min.)
Output (min.)
Dimensions (mm)
(w x h x d)
Weight (kg)
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
230 V Three Phase MIDIMASTER Vector Inverters
22-3CG40
22-3CG50
22-3CS45
23-1CG40
23-1CG50
23-1CS45
24-2CH40
24-2CH50
24-2CS45
25-4CH40
25-4CH50
25-4CS45
MDV550/2
CT VT
MDV750/2
CT VT
MDV1100/2
CT VT
MDV1500/2
CT VT
26-8CJ40
26-8CJ50
26-8CS45
MDV1850/2
CT VT
27-5CJ40
27-5CJ50
27-5CS45
MDV2200/2
CT VT
3 AC 208V — 240 V +/-10%
5.5/ 7.5 7.5/ 10 7.5/ 10 11/ 15 11/ 15 15/ 20 18.5/25 18.5/25 22/ 30 22/ 30 30/ 40
8.8
22
11.2
28
11.2
28
16.7
42
16.7
42
—
—
21.5
54
27.1
68
27.1
68
31.9
80
31.9
80
35.8
95
45 61 87 100 32
50
3NA3820
6 10
63
3NA3822
16 n/a
75
80
3NA3824
25
100
3NA3830
35
6 n/a 25 35 4
275 x 450 x 210
275 x 700 x210
275 x 550 x 210
275 x 800 x 210
10 16
275 x 650 x 285
275 x 920 x 285
360 x 675 x 351
11.0
18
30.5
14.5
22
360 x 775 x 422
15.5
23
38.0
40.0
26.5
37
50.5
360 x 875 x 483
27.0
38
52.5
27.5
38
54.5
*
Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.
G85139-H1751-U529-D1
4/8/99 68
© Siemens plc 1999
8. SPECIFICATIONS
230 V Three Phase MIDIMASTER Vector Inverters
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP20 / NEMA 1 with integrated filter
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
Motor output rating (kW/hp)
Continuous output (kVA) @230V
Output current (max. continuous) (A)
Input current (max.) (A)
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm 2 )
Input (min.)
Output (min.)
31-0CK40
31-0CK50
31-0CS45
MDV3000/2
CT VT
31-3CK40
31-3CK50
31-3CS45
MDV3700/2
CT VT
3 AC 208V — 240 V +/-10%
30/ 40 37/ 50 37/ 50 45/ 60 45/ 60
41.4
51.8
51.8
61.3
61.3
104 130 130 154 154
143 170
160
3NA3036
70
200
3NA3140
95
50 70 70 95
31-5CK40
31-5CK50
31-5CS45
MDV4500/2
CT VT
170
—
—
—
Dimensions (mm)
(w x h x d)
Weight (kg)
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
55 0
85
80
420 x 850 x 310
420 x 1150 x 310
500 x 1150 x 570
55.5
86
85
56.5
87
90
English
© Siemens plc 1999
69
G85139-H1751-U529-D1
4/8/99
English 8. SPECIFICATIONS
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP20 / NEMA 1 with integrated filter
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
Motor output rating (kW/hp)
Continuous output (kVA) @400V
Output current (max. continuous)
@ 400 V (A)
*
Input current (max.) (A)
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm 2 )
Input (min.)
Output (min.)
Dimensions (mm)
(w x h x d)
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA
4/12
Weight (kg) IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA
4/12
380 V — 500 V Three Phase MIDIMASTER Vector Inverters
21-7DG40
21-7DG50
21-7DS45
MDV750/3
CT VT
22-4DG40
22-4DG50
22-4DS45
MDV1100/3
CT VT
23-0DH40
23-0DH50
23-0DS45
MDV1500/3
CT VT
23-5DH40
23-5DH50
23-5DS45
MDV1850/3
CT VT
24-2DJ40
24-2DJ50
24-2DS45
MDV2200/3
CT VT
25-5DJ40
25-5DJ50
25-5DS45
MDV3000/3
CT VT
26-8DJ40
26-8DJ50
26-8DS45
MDV3700/3
CT VT
7.5/
10
12.
7
19 23.
5
11 /
15
16.
3
11/15 15/20 15/20
18
26
30 32
4
32
3NA3814
6
275 x 450 x 210
275 x700 x 210
20.8
30
22.2
32
6
3 AC 380 V — 500 V +/-10%
185/25
25.6
37
185/25 22/30 22/30 30/40 30/40 37/50 37/50 45/60
26.3
38
30.1
43. 5
41
10
49
50
3NA3820
275 x 550 x 210
275 x 800 x210
16
10
31.2
45
64
25
40.2
58
40.2
58
80
3NA3824
79
48.8
71
16
275 x 650 x 285
275 x 920 x285
35
49.9
72
96
100
3NA3830
25
50.2
84
11.5
19
360 x 675 x 351
12.0
19
28.5
30.5
16.0
23
360 x 775 x 422
17.0
24
38 40
27.5
38
50.5
360 x 875 x 483
28.0
39
52.5
28.5
39
54.5
380 V — 500 V Three Phase MIDIMASTER Vector Inverters
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP20 / NEMA 1 with integrated filter
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
28-4DK40
28-4DK50
28-4DS45
CT
MDV4500/3
VT
31-0DK40
31-0DK50
31-0DS45
MDV5500/3
CT VT
Motor output rating (kW/hp)
Continuous output (kVA) @400V
Output current (max. continuous)
@ 400 V (A)
*
Input current (max.) (A)
45 / 60
58.2
84
55 / 75
70.6
102
31-4DK40
31-4DK50
31-4DS45
CT
MDV7500/3
VT
3 AC 380 V — 500 V +/-10%
55 / 75
70.6
102
75 / 100
95.6
138
75 / 100
95.6
138
90 / 120
116
168
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm
2
)
Dimensions (mm)
(w x h x d)
Input (min.)
Output (min.)
IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
Weight (kg) IP21 / NEMA 1
IP20 / NEMA 1 with integrated filter
IP56 / NEMA 4/12
113
125
3NA3032
50
50
57.0
87
80
152
160
3NA3036
70
70
420 x 850 x 310
420 x1150 x 310
500 x 1150 x 570
58.5
88
85
185
200
3NA3140
95
95
60
90
90
*
Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.
G85139-H1751-U529-D1
4/8/99 70
© Siemens plc 1999
8. SPECIFICATIONS English
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
Motor output rating (kW/hp)
Continuous output (kVA) @ 575V
Output current (max. continuous) @ 575 V
(A)
Input current (max.) (A)
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm
2
)
Dimensions (mm)
(w x h x d)
Weight (kg)
Input (min.)
Output (min.)
IP21 / NEMA 1
IP56 / NEMA 4/12
IP21 / NEMA 1
IP56 / NEMA 4/12
525V — 575 V Three Phase MIDIMASTER Vector Inverters
13-8FG40
13-8FS45
16-1FG40
16-1FS45
MDV220/4 MDV400/4
CT VT CT VT
18-0FG40
18-0FS45
MDV550/4
CT VT
21-1FG40
21-1FS45
MDV750/4
CT VT
21-7FG40
21-7FS45
MDV1100/4
CT VT
22-2FH40
22-2FS45
22-7FH40
22-7FS45
MDV1500/4 MDV1850/4
CT VT CT VT
2.2 / 3 4 / 5 4 / 5
3.9
6.1
6.1
3.9
6.1
6.1
7
10
3NA3803 — 6
1.5
10
1.5
11.0
22.0
11.5
24.0
9.0
9.0
11
3 AC 525V — 575 V +/-15%
5.5 / 7.5
5.5 / 7.5
7.5 / 10 7.5 / 10 11 / 15 11 / 15 15 / 20 15 / 20 18.5/ 25 18.5/
25
22 / 30.
13. 9 16.9
19.4
21.9
23.5
26.9
28.4
31.8
9.0
9.0
11 11. 0 17.0
17.0
22.0
22.0
27.0
27.0
32.0
12
16
3NA3805 — 6
2.5
275 x 450 x 210
360 x 675 x 351
11.5
26.0
18
25
3NA3810 — 6
4
2.5
11.5
29.0
24
12.0
30.0
32
3NA3814 — 6
4
29 34
40
3NA3820 — 6
10 6
275 x 550 x 210
6
360 x 775 x 422
16.0
17.0
39.0
40.0
525V — 575 V Three Phase MIDIMASTER Vector Inverters
Order No. — IP21 / NEMA 1 (6SE32..)
Order No. — IP56 / NEMA 4/12 (6SE32..)
Inverter model
Constant Torque (CT)
Variable Torque (VT)
Input voltage range
Motor output rating (kW/hp)
Continuous output (kVA) @ 575V
Output current (max. continuous) @ 575 V (A)
Input current (max.) (A)
Recommended mains fuse (A)
Fuse order code
Recommended lead cross-section (mm
2
)
Dimensions (mm)
(w x h x d)
Weight (kg)
Input (min.)
Output (min.)
IP21 / NEMA 1
IP56 / NEMA 4/12
IP21 / NEMA 1
IP56 / NEMA 4/12
23-2FJ40
23-2FS45
CT
MDV2200/4
VT
22 / 30
33.6
32.0
30 / 40
40.8
41.0
45
50
3NA3820 — 6
10
27.5
50.0
10
24-1FJ40
24-1FS45
CT
MDV3000/4
VT
3 AC 525V — 575 V +/-15%
30 / 40
44.6
41.0
37 / 50
51.7
52.0
55
63
3NA3822 — 6
16
275 x 650 x 285
360 x 875 x 483
28.0
52.0
CT
25-2FJ40
25-2FS45
MDV3700/4
VT
37 / 50
54.4
52.0
65
80
3NA3824 — 6
45 / 60
61.7
62.0
25
16
28.5
54.0
© Siemens plc 1999
71
G85139-H1751-U529-D1
4/8/99
English 8. SPECIFICATIONS
Input frequency:
Mains supply impedance:
Power factor:
Output frequency range:
Resolution:
Overload capability:
Protection against:
Additional protection:
Operating mode:
Regulation and control:
Analogue input / PID input:
Analogue setpoint resolution:
Analogue output:
Setpoint stability:
Motor temperature monitoring:
Ramp times:
Control outputs:
Interface:
Inverter efficiency:
Operating temperature:
Storage/transport temperature:
Ventilation:
Humidity:
Installation height above sea level:
47 Hz to 63 Hz
> 1% (fit input choke if < 1%)
≥
0.7
0 Hz to 650 Hz
0.01 Hz
200% for 3 s and then 150% for 60 s (related to nominal current)
Inverter overtemperature.
Overvoltage and undervoltage
Against short-circuits and earth/ground faults pull-out protection.
Protection against running with no load (open-circuit)
4 quadrants possible.( Re-generation back into mains not possible ).
Sensorless vector; FCC (Flux Current Control); voltage/frequency curve;
Unipolar: 0 ~ 10 V/ 2 ~ 10 V (recommended potentiometer 4.7 k
Ω
)
0 ~ 20 mA/ 4 ~ 20 mA
Bipolar: -10 ~ 0 ~ +10V
10-bit
0 — 20 mA/4 — 20 mA @ 0 — 500
Ω
; stability 5%
Analogue < 1%
Digital < 0.02%
PTC input, l
2 t control
0 — 650 s
2 relays 230 V AC / 0.8 A (overvoltage cat.2); 30 V DC / 2 A
WARNING: External inductive loads must be suppressed
(see section 1.2)
RS485
97%
0 o
C to +50 o
-40 o
C (MMV), 0 o
C to +40 o
C (MDV)
C to +70 o
C
Fan cooling (software controlled)
95% non-condensing
< 1000 m
Degree of protection:
Protective separation of circuits:
MMV: IP20 (NEMA 1) (National Electrical Manufacturers’ Association)
MDV: IP21 (NEMA 1) and IP56 (NEMA 4/12)
Double insulation or protective screening.
Electromagnetic compatibility (EMC):
See section 9.3
Options / Accessories
Braking resistor (MMV only)
Braking Unit (MDV only)
RFI suppression filter
IP20 / NEMA 1 Accessory kit (MMV.FSA only)
Clear Text Display (OPM2)
PROFIBUS Module (CB15)
CANbus Module (CB16)
SIMOVIS software for control via PC
Output chokes and line chokes
Output filters
Please contact your local
Siemens sales office for further details.
G85139-H1751-U529-D1
4/8/99 72
© Siemens plc 1999
9. SUPPLEMENTARY INFORMATION
9. SUPPLEMENTARY INFORMATION
9.1 Application Example
Set-up procedure for a simple application
Motor: 230 V
1.5 kW output power
Application requirements: Setpoint adjustable via potentiometer 0 — 50 Hz
Ramp-up from 0 to 50 Hz in 15 seconds
Ramp-down from 50 to 0 Hz in 20 seconds
MMV150 (6SE3216-8BB40) Inverter used:
Settings: P009 = 2 (all parameters can be altered)
P080 — P085 = values given on motor rating plate
P006 = 1 (analogue input)
P002 = 15 (Ramp-up time)
P003 = 20 (Ramp-down time)
This application is now to be modified as follows:
V
220
Operation of motor up to 75 Hz
(voltage/frequency curve is linear up to 50 Hz).
Motor potentiometer setpoint in addition to analogue setpoint .
Use of analogue setpoint at maximum 10 Hz.
English
50
75 f (Hz)
Settings: P009 = 2 (all parameters can be altered)
P013 = 75 (maximum motor frequency in Hz)
P006 = 2 (setpoint via motor potentiometer or fixed setpoint)
P024 = 1 (analogue setpoint is added)
P022 = 10 (maximum analogue setpoint at 10 V = 10 Hz)
9.2 USS Status Codes
The following list gives the meaning of status codes displayed on the front panel of the inverter when the serial link is in use and parameter P001 is set to 006:
001
002
100
101
102
103
104
Message OK
Slave address received
Invalid start character
Time-out
Checksum error
Incorrect message length
Parity fail
Notes
(1)
(2)
The display flashes whenever a byte is received, thus giving a basic indication that a serial link connection is established.
If ‘100’ flashes on the display continuously, this usually indicates a bus termination fault.
© Siemens plc 1999
73
G85139-H1751-U529-D1
4/8/99
English 9. SUPPLEMENTARY INFORMATION
9.3 Electro-Magnetic Compatibility (EMC)
All manufacturers / assemblers of electrical apparatus which performs a complete intrinsic function which is placed on the market as a single unit intended for the end user must comply with the EMC directive
EEC/89/336 after January 1996. There are three routes by which the manufacturer/assembler can demonstrate compliance:
1.
Self-Certification
This is a manufacturer’s declaration that the European standards applicable to the electrical environment for which the apparatus is intended have been met. Only standards which have been officially published in the Official Journal of the European Community can be cited in the manufacturer’s declaration.
2.
3.
Technical Construction File
A technical construction file can be prepared for the apparatus describing its EMC characteristics. This file must be approved by a ‘Competent Body’ appointed by the appropriate European government organisation. This approach allows the use of standards which are still in preparation.
EC Type-Examination Certificate
This approach is only applicable to radio communication transmitting apparatus.
The MICROMASTER Vector and MIDIMASTER Vector units do not have an intrinsic function until connected with other components (e.g. a motor). Therefore, the basic units are not allowed to be CE marked for compliance with the EMC directive. However, full details are provided below of the EMC performance characteristics of the products when they are installed in accordance with the wiring recommendations in section 1.2.
Compliance Table (MMV):
Model No.
MMV12 — MMV300
MMV12/2 — MMV400/2
MMV12/2 — MM400/2 with external filter (see table) 1 phase input only
MMV37/3 — MMV750/3
MMV220/3F — MMV750/3F
MMV37/3 — MMV750/3 with external filter (see table, class A)
MMV37/3 — MMV750/3 with external filter (see table, class B)
EMC Class
Class 2
Class 1
Class 2*
Class 1
Class 2*
Class 2*
Class 3*
Compliance Table (MDV):
Model No.
MDV750/3 — MDV7500/3
MDV550/2 — MDV4500/2 with class A external filter (see table)
MDV550/2 — MDV1850/2 with class B external filter (see table)
MDV550/2 — MDV4500/2
MDV750/3 — MDV7500/3 with class A external filter (see table)
MDV750/3 — MDV3700/3 with class B external filter (see table)
MDV750/4 — MDV3700/4
EMC Class
Class 1
Class 2*
Class 3*
Class 1
Class 2*
Class 2*
Class 1
* If the installation of the inverter reduces the radio frequency field emissions (e.g. by installation in a steel enclosure), Class 3 radiated emission limits will typically be met.
G85139-H1751-U529-D1
4/8/99 74
© Siemens plc 1999
9. SUPPLEMENTARY INFORMATION English
Filter Part Numbers:
Inverter Model No.
Class A Filter Part No. Class B Filter Part No. Standard
MMV12 — MMV300
MMV220F — MMV750F
MMV12/2 — MMV25/2
MMV37/2 — MMV75/2
MMV110/2 — MMV150/2
MMV220/2 — MMV300/2
MMV37/3 — MMV150/3
MMV220/3 — MMV300/3
MMV400/3 — MMV750/3
MDV550/2
Built-in
Built-in EN 55011 / EN 55022
6SE3290-0BA87-0FB0 EN 55011 / EN 55022
6SE3290-0BA87-0FB2 EN 55011 / EN 55022
6SE3290-0BB87-0FB4 EN 55011 / EN 55022
6SE3290-0BC87-0FB4 EN 55011 / EN 55022
6SE3290-0DA87- 0FA1 6SE3290-0DA87-0FB1 EN 55011 / EN 55022
6SE3290-0DB87- 0FA3 6SE3290-0DB87-0FB3 EN 55011 / EN 55022
6SE3290-0DC87- 0FA4 6SE3290-0DC87-0FB4 EN 55011 / EN 55022
6SE3290-0DG87- 0FA5 6SE2100-1FC20
MDV750/2 6SE3290-0DH87- 0FA5 6SE2100-1FC20
MDV1100/2 — MDV1850/2 6SE3290-0DJ87- 0FA6 6SE2100-1FC21
MDV2200/2 6SE3290-0DJ87- 0FA6
MDV3000/2 — MDV4500/2 6SE3290-0DK87- 0FA7
MDV 750/3 — MDV1100/3 6SE3290-0DG87- 0FA5 6SE2100-1FC20
MDV1500/3 — MDV1850/3 6SE3290-0DH87- 0FA5 6SE2100-1FC20
MDV2200/3 — MDV3700/3 6SE3290-0DJ87- 0FA6 6SE2100-1FC21
MDV4500/3 — MDV7500/3 6SE3290-0DK87- 0FA7
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
EN 55011 / EN 55022
Note: Maximum mains supply voltage when filters are fitted is 460V.
Three classes of EMC performance are available as detailed below. Note that these levels of performance are only achieved when using the default switching frequency (or less) and a maximum motor cable length of 25 m.
Class 1: General Industrial
Compliance with the EMC Product Standard for Power Drive Systems EN 61800-3 for use in Second
Environment (Industrial) and Restricted Distribution.
EMC Phenomenon
Emissions:
Radiated Emissions
Conducted Emissions
Immunity:
Electrostatic Discharge
Burst Interference
Radio Frequency Electromagnetic Field
Standard
EN 55011
EN 61800 — 3
EN 61000-4-2
EN 61000-4-4
IEC 1000-4-3
Level
Level A1 *
*
8 kV air discharge
2 kV power cables, 1 kV control
26-1000 MHz, 10 V/m
*
Emission limits not applicable inside a plant where no other consumers are connected to the same electricity supply transformer.
© Siemens plc 1999
75
G85139-H1751-U529-D1
4/8/99
English 9. SUPPLEMENTARY INFORMATION
Class 2: Filtered Industrial
This level of performance will allow the manufacturer/assembler to self-certify their apparatus for compliance with the EMC directive for the industrial environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the Generic Industrial Emissions and Immunity standards EN 50081-2 and EN 50082-2.
Standard Level EMC Phenomenon
Emissions:
Radiated Emissions
Conducted Emissions
EN 55011
EN 55011
Level A1
Level A1
Immunity:
Supply Voltage Distortion
Voltage Fluctuations, Dips, Unbalance,
Frequency Variations
Magnetic Fields
Electrostatic Discharge
Burst Interference
Radio Frequency Electromagnetic Field, amplitude modulated
Radio-frequency Electromagnetic Field, pulse modulated
IEC 1000-2-4 (1993)
IEC 1000-2-1
EN 61000-4-8
EN 61000-4-2
EN 61000-4-4
ENV 50 140
ENV 50 204
50 Hz, 30 A/m
8 kV air discharge
2 kV power cables, 2 kV control
80-1000 MHz, 10 V/m, 80% AM, power and signal lines
900 MHz, 10 V/m 50% duty cycle,
200 Hz repetition rate
Class 3: Filtered — for residential, commercial and light industry
This level of performance will allow the manufacturer / assembler to self-certify compliance of their apparatus with the EMC directive for the residential, commercial and light industrial environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the generic emission and immunity standards EN 50081-1 and EN 50082-1.
Standard Level EMC Phenomenon
Emissions:
Radiated Emissions
Conducted Emissions
EN 55022
EN 55022
Level B1
Level B1
Immunity:
Electrostatic Discharge
Burst Interference
EN 61000-4-2
EN 61000-4-4
8 kV air discharge
1 kV power cables, 0.5 kV control
Note:
The MICROMASTER Vector and MIDIMASTER Vector units are intended exclusively for
professional applications. Therefore, they do not fall within the scope of the harmonics emissions specification EN 61000-3-2.
G85139-H1751-U529-D1
4/8/99 76
© Siemens plc 1999
9. SUPPLEMENTARY INFORMATION English
9.4 Environmental Aspects
Transport and Storage
Protect the inverter against physical shocks and vibration during transport and storage. The unit must also be protected against water (rainfall) and excessive temperatures (see section 8).
The inverter packaging is re-usable. Retain the packaging or return it to the manufacturer for future use.
Dismantling and Disposal
The unit can be broken-down to it’s component parts by means of easily released screw and snap connectors.
The component parts can be re-cycled, disposed of in accordance with local requirements or returned to the manufacturer.
Documentation
This handbook is printed on chlorine-free paper which has been produced from managed sustainable forests.
No solvents have been used in the printing or binding process.
© Siemens plc 1999
77
G85139-H1751-U529-D1
4/8/99
English
9.5 User’s Parameter
Settings
Record your own parameter settings in the tables below (Note: ¶¶¶ =
Value depends on the rating of the inverter):
Parameter Your setting
Default
P000
—
P001
0
P023
P024
P025
P026
P027
P028
P029
P031
P032
P033
P034
P040
P041
P015
P016
P017
P018
P019
P021
P022
P002
P003
P004
P005
P006
P007
P009
P010
P011
P012
P013
P014
P042
P043
P044
P045
P046
P047
P048
P049
P050
P051
P052
P053
P054
0.00
0.00
0.00
5.00
5.00
0
0
0
0
10.0
10.0
0
5.00
1
0
0
0
2.00
0.00
50.00
10.0
10.0
0.0
5.00
0
1
0
1.00
0
0.00
50.00
0.00
10.00
15.00
20.00
0
25.0
30.0
35.0
40.0
0
1
2
6
6
G85139-H1751-U529-D1
4/8/99
Parameter
P121
P122
P123
P124
P125
P128
P131
P132
P133
P134
P135
P137
P087
P088
P089
P091
P092
P093
P094
P095
P099
P101
P111
P112
P113
P071
P072
P073
P074
P075
P076
P077
P078
P079
P055
P056
P057
P061
P062
P063
P064
P065
P066
P069
P070
P080
P081
P082
P083
P084
P085
P086
Your setting
Default
120
—
—
—
—
—
—
1
1
1
1
1
0
0
¶¶¶
0
6
0
50.00
0
0
0
¶¶¶
¶¶¶
¶¶¶
0
250
0
3
0
0/4
1
100
0
8
1.0
1.0
1.0
0
1
0
6
0
1.0
6
¶¶¶
50.00
¶¶¶
¶¶¶
¶¶¶
¶¶¶
150
9. SUPPLEMENTARY INFORMATION
Your setting
Default
—
—
0
—
0.0
—
—
0
—
0.0
—
0
0
—
50.00
0
6
1.0
1.0
—
—
1.0
0.00
0.0
1
0
100
0
—
—
—
—
200
0
—
0.0
100.00
0
0.00
—
—
—
—
—
—
1
—
—
0
—
—
© Siemens plc 1999
Parameter
P702
P720
P721
P722
P723
P724
P725
P726
P880
P910
P918
P922
P923
P322
P323
P356
P386
P387
P700
P701
P927
P928
P930
P931
P944
P947
P958
P963
P967
P968
P970
P971
P202
P203
P204
P205
P206
P207
P208
P210
P211
P212
P220
P321
P138
P139
P140
P141
P142
P143
P186
P201
78
Herausgegeben vom
Bereich Automatisierungs- und Antriebstechnik (A&D)
Geschäftsgebiet Standard Drives
Postfach 3269, D-91050 Erlangen
Bestell-Nr. 6SE3286-4AB66
*6SE3286-4AB66*
Änderungen vorbehalten
Specification subject to change without prior notice
Siemens plc
Automation & Drives
Standard Drives Division
Siemens House
Varey Road
Congleton CW12 1PH
G85139-H1751-U529-D1
*H1751-U529-D1*
© Siemens plc 1999
Printed in England
English
Parameter Function
P077
Control mode
P078 ·
Continuous boost (%)
MMV
MDV (P077=3)
MDV (P077=0, 1 or 2)
P079 ·
Starting boost (%)
P080
Nominal rating plate motor power
factor (cosj)
P081
Nominal rating plate frequency for
motor (Hz)
P082
Nominal rating plate speed for motor
(RPM)
P083
Nominal rating plate current for motor
(A)
P084
Nominal rating plate voltage for motor
(V)
P085
Nominal rating plate power for motor
(kW)
P086 ·
Motor current limit (%)
P087 ·
Motor PTC enable
G85139-H1751-U529-D1
4/8/99
Range
Description / Notes
[Default]
0 — 3
Controls the relationship between the speed of the motor and the voltage
supplied by the inverter. One of four modes can be selected:
(1)
0 = V/f curve
1 = FCC control
2 = Quadratic V/f
3 = Vector Control
Note: When Sensorless Vector Control is selected (P077 = 3), P088 will
automatically be set to 1, so that on first run-up, the inverter will
measure the stator resistance of the motor and calculate motor
constants from the rating plate data in P080 to P085.
For many applications it is necessary to increase low frequency torque. This
0 — 250
parameter sets the start-up current at 0 Hz to adjust the available torque for low
[100]
frequency operation. 100% setting will produce rated motor current (P083) at
[100]
low frequencies.
[50]
WARNING:
0 — 250
For drives which require a high initial starting torque, it is possible to set an
[0]
additional current (added to the setting in P078) during ramp duration (P002).
This is only effective during initial start up and until the frequency setpoint is
reached.
WARNING:
0.00-1.00
[¶¶¶]
If efficiency is shown on the motor rating plate, calculate the power factor as
follows: pf =
If neither power factor nor efficiency are shown on the motor rating plate — set
P080 = 0.
0 — 650.00
[50.00]
Notes:
0 — 9999
[¶¶¶]
1 These parameters P080 to P085 must be set for the particular motor used.
Read the figures from the motor rating plate (see Figure 4.2..1 ).
2 It will be necessary to perform an automatic calibration (P088 = 1) if P080 to
0.1-300.0
[¶¶¶]
P085 are changed from their factory default settings.
0 — 1000
3 When the inverter is set-up for North American operation (P101=1); P081 will
[¶¶¶]
default to 60Hz and P085 will indicate hp (0.16 — 250)
0.12-250.00
[¶¶¶]
0 — 250
Defines the motor overload current as a % of the Nominal motor current (P083)
allowed for up to one minute.
[150]
With this parameter and P186, the motor current can be limited and
overheating of the motor prevented. If the value set in P083 is exceeded for
one minute, (or longer if the overload is small) , the output frequency is reduced
until the current falls to that set in P083. The inverter display flashes as a
warning indication but the inverter does not trip. The inverter can be made to
trip using P074.
Note:
The maximum value that P086 can be set to is automatically limited by
the rating of the inverter. Further, the power can be automatically
reduced for pulse frequencies which differ from the factory setting
(refer to P076)
0 — 1
0 = Disabled
1 = External PTC enabled
[0]
Note:
If motor thermal protection is required, then an external PTC must
be used and P087 = 1. If P087 = 1 and the PTC input goes high
then the inverter will trip (fault code F004 displayed).
56
6. SYSTEM PARAMETERS
hp x 746
1.732 x efficiency x nom. volts x nom. amps
If P078 is set too high, overheating of the motor and/or
an overcurrent trip (F002) can occur.
This increase is in addition to P078, but the total is
limited to 250%.
© Siemens plc 1999