Micromaster vector инструкция на русском

  • Contents

  • Table of Contents

  • Bookmarks

Quick Links

MICROMASTER Vector

MIDIMASTER Vector

© Siemens plc 1999

Operating Instructions

Contents

SAFETY INSTRUCTIONS ……………………………………………………… 4

1. OVERVIEW …………………………………………………………………… 6

5. OPERATING MODES …………………………………………………… 36

8. SPECIFICATIONS………………………………………………………… 67

G85139-H1751-U529-D1

4/8/99

loading

Summary of Contents for Siemens MICROMASTER Vector

Ввод в эксплуатацию с базовой панелью оператора (ВОР) Базовая панель оператора (BOP), поставляемая как опция, дает возможность доступа к параметрам преобразователя и обеспечивает специфическую пользовательскую настройку MICROMASTER 440. BOP может использоваться для конфигурирования боль- шинства преобразователей MICROMASTER 440. Поэтому нет необходимости покупать свою панель BOP для каждо- го преобразователя.
Панель имеет сегментные индикаторы для чтения и записи параметров преобразователя. Панель не имеет возможности собственного хранения информации и параметров после её снятия.

Примечание
• При установке панель не позволяет управлять двигателем (пуск/стоп), если используются установки привода по умолчанию. Для активизации возмож- ности управления необходимо установить параметры Р0700 и Р1000 в «1».

• Панель может сниматься и устанавливаться на преобразователе при вклю-

ченном питании преобразователя.

• Если панель предназначена для управления двигателем (Р0700 = 1), то привод остановится после снятия панели.

Руководство пользователя преобразователей MICROMASTER 440
Клавиши базовой панели управления
Клавиша Функция Назначение

Индикатор состояния

Пуск дви-

гателя

LCD показывает установку или параметр, с которой преобразователь работает в данный момент.
При нажатии клавиши преобразователь пускается. Эта клавиша является по умолчанию пассивной. Клавишу активизируют установкой P0700 =1

Стоп дви-

гателя

Реверс вращения

Толчковый режим

Функции
Доступ к парамет- рам

Увеличить значение

Уменьшить значение
OFF1 — Нажатие клавиши приводит к остановке преоб- разователя по выбранной рампе скорости. По умолча- нию клавиша пассивна, активизируется установкой P0700 = 1.

OFF 2 — Двойное нажатие (или длительное удержание) вызывает свободный выбег электродвигателя до оста- новки.

Нажатие этой клавиши вызывает реверсирование (из- менение направления вращения) электродвигателя. Обратное вращение отображается знаком минус (-) или мигающей десятичной точкой. По умолчанию кла- виша пассивна, активизируется установкой P0700 = 1.

Нажатие этой клавиши при остановленном преобразо- вателе обеспечивает пуск электродвигателя с задан- ной JOG-частотой. После отпускания клавиши преоб- разователь останавливает двигатель. Нажатие клави- ши при работающем преобразователе с электродвига- телем, не приводит ни к каким действиям.

Эта клавиша может использоваться для отображения дополнительной информации.

Клавиша должна нажиматься и удерживаться в тече-

ние 2 секунд. Она указывает при работе следующее:

1. Напряжение звена постоянного тока (Обозначено буквой d) в (V)

2. Выходной ток (A)

3. Выходная частота (Hz)

4. Выходное напряжение (V)

4. Величину (выбранную в P0005)

Повторные нажатия возвращают показания дисплея к текущему значению.
Нажатие этой клавиши обеспечивает доступ к пара-

метрам и настройкам привода
Нажатие этой клавиши увеличивает отображаемое значение. Для изменения задания частоты с помощью BOP необходимо установить P1000 = 1
Нажатие этой клавиши уменьшает отображаемое зна- чение. Для изменения задания частоты с помощью BOP нужно установить P1000 = 1.

Изменение параметров с панели ВОР

Нижеследующее описание показывает, как необходимо изменять параметры. Это описание может использоваться как руководство для установки любого параметра с помощью BOP.
Изменение параметра Р0004 — параметр доступа функций.
Шаг Отображение

1. Нажмите клавишу для доступа к параметрам
2. Нажимайте до появления параметра Р0004
3. Нажмите клавишу для доступа к значению
4. Нажимайте и до установки значения
5. Нажимайте для возврата и записи значения
6. Могут быть доступны только параметры двигателя
Изменение параметра Р1082 — установка максимальной частоты двигате-

ля
Шаг Отображение
1. Нажмите клавишу для доступа к параметрам

2. Нажимайте до появления параметра Р1082
3. Нажмите клавишу для доступа к уровню
4. Нажмите клавишу для доступа к значению
5. Нажимайте и до установки значения
6. Нажимайте для возврата и записи значения
7. Нажмите клавишудля возврата к параметру

8. Нажмите клавишу для возврата к индикации установленного параметра

Функция кнопки (Fn) базового пульта оператора
Использование кнопки Функции.

Кнопка Функция используется для просмотра информации о параметрах при-

вода. Для их просмотра должны быть выполнены следующие действия:

Из любого параметра, нажмите и удерживайте кнопку функции:
1. Дисплей изменится для индикации напряжения DC звена (обозначается d) .

2. Нажмите кнопку функции снова для индикации выходного тока (A).

3. Нажмите кнопку функции снова для индикации выходной частоты (Hz).

4. Нажмите кнопку функции снова для индикации выходного напряжения (обо-

значается o).

5. Нажмите кнопку функции снова для индикации функции, выбранной для ото- бражения в P0005. (Если параметр P0005 установлен для индикации в одно из вышеупомянутых значений (3,4 или 5), то они не будут индицироваться).
Примечание

Дополнительные нажатия приведут к переключению отображения по кругу. Нажмите и удерживайте кнопку функции в любой точке в цикле для отображе- ния; номер параметра, с которого Вы начнете (например, r0000) и возможность возврата к этому отображению.

Функция прокрутки

Если пользователю требуется изменить значение параметра, то для увеличе- ния или уменьшения значения необходимо воспользоваться клавишами на BOP или соответственно.
Изменение отдельных цифр в значениях параметра

Для быстрого изменения значения параметра могут быть изменены отдельные отображаемые цифры путем выполняя следующих действий:

Убедитесь, что Вы находитесь на уровне изменения значения параметра

(см. «Изменение параметров с BOP»).
1. Нажмите (функциональную клавишу), которая приведет к миганию крайней правой цифры.
2. Измените значение этой цифры нажатием на / .

3. Нажмите (функциональную клавишу) снова, что приведет к миганию следующей цифры.
4. Выполняйте шаги 2 — 4 до тех пор, пока не будет показано требуемое значение.
5. Нажмите , чтобы выйти из уровня изменения значения параметра.

Примечание

Функциональная клавиша может быть также использована для подтверждения сбоев.
Функция прокрутки

Если пользователю требуется изменить значение параметра, то для увеличе- ния или уменьшения значения необходимо воспользоваться клавишами на BOP или соответственно.
Изменение отдельных цифр в значениях параметра

Для быстрого изменения значения параметра могут быть изменены отдельные отображаемые цифры путем выполняя следующих действий:

Убедитесь, что Вы находитесь на уровне изменения значения параметра

(см. «Изменение параметров с BOP»).
1. Нажмите (функциональную клавишу), которая приведет к миганию крайней правой цифры.
2. Измените значение этой цифры нажатием на / .

3. Нажмите (функциональную клавишу) снова, что приведет к миганию следующей цифры.
4. Выполняйте шаги 2 — 4 до тех пор, пока не будет показано требуемое значение.
5. Нажмите , чтобы выйти из уровня изменения значения параметра.

Примечание

Функциональная клавиша может быть также использована для подтверждения сбоев.
Функция перехода

Из любого параметра (rXXXX или PXXXX) кратким нажатием клавиши Fn, Вы немедленно перейдете на r0000, и, если требуется, затем изменить другой па- раметр. После возврата в r0000, нажатие клавиши Fn возвратит Вас к отправ- ной точке.

1 . ВВОД ПАРАМЕТРОВ ДВИГАТЕЛЯ И ЕГО ИДЕНТИФИКАЦИЯ

Перед началом работы внимательно изучить инструкцию по
эксплуатации преобразователя частоты !!
1 Этап. Сброс на заводские установки.

Если в ходе настройки преобразователя частоты (далее – ПЧ ) были введены ошибочные значения параметров и затруднителен их поиск и исправление , то рекомендуется осуществить сброс всех параметров на заводские настройки и повторить цикл параметрирования снова.

Для этой процедуры используются след. параметры:

  1. Р0003 =4 — уровень доступа к параметрам (экспертный уровень). При этом открывается доступ ко всем параметрам ПЧ
  2. Р0010=30 — разрешение на заводские настройки
  3. Р0970=1 — старт процесса сброса

2 Этап. Введение параметров двигателя. (Быстрый ввод в эксплуатацию)
Р0003 = 4 — уровень доступа к параметрам

Р0004 = 0 — фильтр параметров (все параметры)

Р0010 = 1 — быстрое параметрирование (начало процесса тестирования двигателя)

Р0100 = 0

Р0205 = 0 — работа с постоянным моментом

Р0300 = 1 — асинхронный двигатель, (АД)

Р0304 = 380 — номинальное напряжение двигателя , В

Р0305 = … — номинальный ток двигателя, А

Р0307 = … — номинальная мощность двигателя, кВт

Р0308 = … — cosφ двигателя

Р0310 = 50 , номинальная частота, Гц

Р0311 = … — Номинальная асинхронная скорость двигателя, об./мин ( с шильдика двигателя)

Р0320 = 0 — ток намагничивания (определяется автоматически в ходе тестирования)

Р0335 = 0 — самоохлаждение двигателя

Р0500 = 0 — тип нагрузки (постоянный момент)

Р0640 =170 — перегрузка двигателя по току (рекомендуется 150 -180), %

Р0700 =1 — выбор источника управляющих сигналов (1-пульт управления, 2- внешними

сигналами. После тестирования выставить 2)

Р1000 =3 — выбор источников задания частоты («3» — фиксированные частоты)

Р1080 =0 — минимальная частота, Гц

Р1082 =50 — максимальная частота, Гц

Р1120 = 2.1 — время разгона, с

Р1121 = 1.2 — время торможения, с

Р1135 = 0.4 — время аварийного останова, с

Р1300 = 20 — выбор режима управления — векторное управление без обр. связи

Р1500 = 0 — выбор источника задания момента

Р1910 = 1 — определение параметров двигателя ( при этом появляется код предупре-

ждения А0541 , что при последующей подаче команды «Пуск» начнется

измерение параметров двигателя

P1960 = 0 — оптимизация контроля скорости

Р3900 = 3 — Завершение быстрого ввода с расчетом двигателя (появится сигнал занятости

расчетами)
-Подождать , пока не закончится предварительный расчет

-Нажать кнопку Пуск (или подать внешнюю команду на пуск). При этом должны быть слышны характерные звуки в тестируемом двигателе.

-Подождать , пока закончится тестирование двигателя . По окончании тестирования дисплей будет отображать последний параметр.

-Приступить к редактированию остальных параметров.

Внимание : 1. Во время тестирования двигатель должен быть подключен к выходу частотного преобразователя. Если двигатель подключен через дополнительный контактор, то на время тестирования контактор нужно включить принудительно (или на время его зашунтировать).

2. На время тестирования отключить шкаф управления или цепи управления тормозом лебедки.

3. На время тестирования временно выставить : Р700 =1 (управление с пульта).

После тестирования выставить в «2» (терминал)!

4. Вернуть все временные изменения в цепях управления в исходное состояние

5. Переход к разрядам чисел при редактировании параметров осуществляется нажатием на клавишу « Fn » на пульте управления.

Список основных параметров для редактирования
Р003 =3 — уровень доступа к параметрам

Р004 =0 — фильтр параметров (все параметры)

Р100=0 — европейская система единиц (кВт, 50 Гц)

Р205=0 — режим использования ПЧ ( постоянный момент)

Р290=1 — реакция ПЧ на перегрузки (выход в аварию -отключение)

Р295=20 — задержка отключения вентилятора охлаждения

Р300=1 — тип двигателя (асинхронный)

Р304=380 (ном. напряжение двигателя )

Р305=…. (ном. ток двигателя, А)

Р306=….. (ном. мощность двигателя, кВт)

Р308=….. ( cos двигателя )

Р310=50 ( ном. частота двигателя )

Р311=…. (Номинальная асинхронная скорость двигателя, об./мин)

Р335=0 — охлаждение двигателя (самоохлаждение)

Р500=0 — область применения ПЧ (привод с постоянным моментом)

Р610=2 — реакция на перегрев двигателя (предупреждение и выход в аварию – F0011)

Р640=170 — допустимая перегрузка двигателя по току (рекомендуется 150 -180), %

Р700=2 — выбор источника управляющих сигналов — терминал (при тестировании двигателя

временно выставить =1)

Р701=1 – функция входа №1 (направление вверх)

Р702=2 – функция входа №2 (направление вниз)

Р703=15 – функция входа №3 (фиксированная частота большой скорости)

Р704=99 – функция входа №4 (BICO-функции — расширенные функции с возможностью перехода

на 2-й набор времени разгона-торможения и фиксированная частота малой скорости)

Р705=0 – вход не используется

Р706=4 функция быстрого аварийного останова. На этот вход подано напряжение +24 в, когда нет обрыва цепи безопасности или нет условий для аварийного останова привода. При возникновении аварийной ситуации сигнал должен немедленно сниматься, тем самым формируя аварийный останов привода.

Р707=0 – вход не используется

Р708=0 – вход не используется

Р724=2 – время фильтрации входных сигналов (8.2 мс)

Р731=52:3 – функция выхода №1 (готовность привода и отсутствие аварий)

Р732=2811:0 – функция выхода №2 (синхронизация работы тормоза – выход внутреннего

контроллера — анализатора частоты и тока)

Р1000=3 – источник задания частот (фиксированные частоты)

Р1001=0 — задание частоты по входу №1 – нет

Р1002=0 — задание частоты по входу №2 – нет

Р1003=47 (задание частоты по входу №3 -частота для большой скорости . )

Р1004=9 (задание частоты по входу №4 -частота для малой скорости . )

Р1005…. по Р1015=0

Р1023=722.3 (BICO-задание частоты по входу №3)

Р1031=0 (сохранение частоты в панели управления –нет)

Р1060= 2.1 (второе время разгона),сек

Р1061=1.3 (второе время торможения — при переходе на малую скорость),сек

Р1080=0 – мин. частота

Р1082=50 –максимальная частота

Р1120= 2.1 (время разгона)

Р1121=1,2 (время торможения -на шунте ТО)

Р1124=722.3 (активация 2-го времени разгона-торможения по входу №3)

Р11300,5 (1-й участок округления при разгоне), с

Р11310,5 (2-й участок округления при разгоне), с

Р11320.5 (1-й участок округления при торможении), с

Р11330.4 (2-й участок округления при торможении), с

Р1134=1 (округление при обрыве задания –нет)

Р1135=0.4 (время торможения при аварийном останове),с

Р1210=1 (автоматический перезапуск –нет)

Р1215=1 (активация удержания током)

Р1216=0.3 (время удержания перед стартом),с

Р1217=1 (время удержания перед наложением тормоза),с

Р1237=5 (уровень динамического торможения -100%)

Р1240=0 (дезактивация контроллера звена постоянного тока)

Р1300=20 (векторный режим работы)

Р1470=7 ( пропорциональный коэффициент регулятора скорости – рекомендованные значения

лежат в области 5.5 — 8 . С увеличением этого коэффициента возрастает скорость реакции

привода на неоднородности момента на валу двигателя, но при этом могут возникать

возбуждения привода в определенных ситуациях. Оптимальное значение коэффициента

определяется экспериментально-по удовлетворительной работе привода в динамических

процессах)

Р1472=176 ( интегральный коэффициент регулятора скорости- рекомендованные значения лежат в

области 80 – 300. оказывает сглаживающее воздействие на регулирование скорости.

Обычно с увеличением пропорциональной части уменьшают интегральную часть.)

Р1570=110 ( коэффициент потокосцепления)

Р1610=200 (увеличение момента на сверхнизких частотах)

Р1611=150 (увеличение момента при разгоне)

Р1755=3 (частота перехода управления на векторную модель)

Р1756=50 (гистерезис частоты перехода на векторную модель)

Р1758=100 (минимальное время перехода с токовой модели на векторную модель)

Р1800=6 ( ШИМ-частота работы транзисторных ключей ПЧ)

P2106=2829:0 (источник формирования искусственной аварии-выход логического элемента

NOT1)

Р2150=0 (гистерезис контроля частоты)

Р2155 =0.03 (контрольная частота №1)

Р2156=0 (задержка после определения контрольной частоты)

Р2157=0.03 (контрольная частота №2)

Р2158=0 (задержка после определения контрольной частоты)

Р2159=0.03 (контрольная частота №3)

Р2160=0 (задержка после определения контрольной частоты)

P2170=5 (контрольный уровень тока, в % от номинального тока двигателя)

Р2180=100 (задержка выдачи кода аварии при потере нагрузки, мс)

Р2800=1 (активация встроенного логического контроллера)

Р2801 in 000 =1 активация логического элемента AND1

in 009 =1 активация логического элемента NOT1
P2810 in 000=53:3 — вход логического элемента AND1(контрольный уровень тока)

in 001=2198:1 — вход логического элемента AND1 (контрольная частота №2)
P2828=2197:B (формирование аварии при потере нагрузки-выход логического элемента NOT1)

Примечание: Все значения частот и времени разгона-торможения справедливы только для расстояний между шунтами согласно паспортным данным и длине шунта точной остановки -20 см.

MIDIMASTER Vector

Operating Instructions

© Siemens plc 1999

Contents

SAFETY INSTRUCTIONS………………………………………4

1. OVERVIEW …………………………………………………….6

2. INSTALLATION — MICROMASTER Vector ………12

3. INSTALLATION — MIDIMASTER Vector…………..25

4. CONTROLS AND BASIC OPERATION……………32

5. OPERATING MODES…………………………………….36

6. SYSTEM PARAMETERS ……………………………….41

7. FAULT AND WARNING CODES……………………..65

8. SPECIFICATIONS …………………………………………67

9. SUPPLEMENTARY INFORMATION………………..73

G85139-H1751-U529-D1

4/8/99

4

4.1

4.1.2

4.2

4.2.1

4.2.2

4.2.3

3

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

5

5.1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.4

5.5

2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

Contents

1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

Overview

Installation — General Notes

Wiring Guidelines to Minimise the Effects of EMI

Electrical Installation — General Notes

Operation with Unearthed (IT) Supplies

Operation with Residual Current Device (RCD)

Installation After a Period of Storage

Operation with Long Cables

Installation – MICROMASTER Vector

Mechanical Installation

Electrical Installation

Power and Motor Connections — Frame Size A

Power and Motor Connections — Frame Size B

Power and Motor Connections — Frame Size C

Control Connections

External Motor Thermal Overload Protection

Block Diagram – MICROMASTER Vector

Installation – MIDIMASTER Vector

Mechanical Installation

Electrical Installation

Power and Motor Connections

Control Connections

Motor Overload Protection

Block Diagram – MIDIMASTER Vector

Controls and Basic Operation

Controls

DIP Selector Switches

Basic Operation

General

Initial Testing

Basic Operation – 10 Step Guide

Operating Modes

Digital Control

Analogue Control

Motor Control Modes

Linear Voltage to Frequency (V/f) (P077= 0 or 2)

Flux Current Control (FCC) Operation (P077 = 1)

37

37

Sensorless Vector Control (SVC) Operation (P077 = 3) 37

Stopping the Motor 38

If the Motor Does Not Start Up 38

36

36

36

36

34

34

35

32

32

33

34

30

30

31

25

25

28

29

12

12

15

17

18

20

22

23

24

10

10

10

11

6

7

8

10

G85139-H1751-U529-D1

4/8/99 2

© Siemens plc 1999

7

7.1

7.2

8

9

9.1

9.2

9.3

9.4

9.5

5.6

5.7

5.7.1

5.7.2

5.7.3

6

Local and Remote Control

Closed Loop Control

General Description

Hardware Set-up

Parameter Settings

System Parameters

Fault and Warning Codes

Fault Codes

Warning Codes

Specifications

Supplementary Information

Application Example

USS Status Codes

Electro-Magnetic Compatibility (EMC)

Environmental Aspects

User’s Parameter Settings

65

65

66

67

73

73

73

74

77

78

38

39

39

40

40

41

© Siemens plc 1999

3

G85139-H1751-U529-D1

4/8/99

Safety Instructions

Before installing and putting this equipment into operation, please read these safety instructions and warnings carefully and all the warning signs attached to the equipment. Make sure that the warning labels are kept in a legible condition and replace missing or damaged labels.

WARNING

This equipment contains dangerous voltages and controls dangerous rotating mechanical parts. Loss of life, severe personal injury or property damage can result if the instructions contained in this manual are not followed.

Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual.

The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.

The MICROMASTER and MIDIMASTER Vector units operate at high voltages.

Only permanently-wired input power connections are allowed. This equipment must be grounded

(IEC 536 Class 1, NEC and other applicable standards).

If a Residual Current-operated protective Device

(RCD) is to be used it must be an RCD type B.

The dc-link capacitor remains charged to dangerous voltages even when the power is removed. For this reason it is not permissible to open the equipment until five minutes after the power has been turned off. When handling the open equipment it should be noted that live parts are exposed. Do not touch these live parts.

Machines with a three phase power supply, fitted with EMC filters, must not be connected to a supply via an ELCB (Earth Leakage Circuit-

Breaker — see DIN VDE 0160, section 6.5).

The following terminals can carry dangerous voltages even if the inverter is inoperative:

— the power supply terminals L/L1, N/L2 and L3

(MMV) — L1, L2, and L3 (MDV).

-the motor terminals U, V, W.

-the braking resistor terminals B+/DC+ and B-

(MMV).

-the braking unit terminals DC+ and DC-

(MDV).

Only qualified personnel may connect, start the system up and repair faults. These personnel must be thoroughly acquainted with all the warnings and operating procedures contained in this manual.

Certain parameter settings may cause the inverter to restart automatically after an input power failure.

This equipment is capable of providing internal motor overload protection in accordance with

UL508C section 42. Refer to P074. Motor overload protection can also be provided by using an external PTC.

This equipment is suitable for use in a circuit capable of delivering not more than 100,000 symmetrical amperes (rms), for a maximum voltage of 230/460V* when protected by a time delay fuse*.

*As detailed in section 8.

This equipment must not be used as an

‘emergency stop’ mechanism (see EN 60204,

9.2.5.4).

CAUTION

Children and the general public must be prevented from accessing or approaching the equipment!

This equipment must only be used for the purpose specified by the manufacturer. Unauthorised modifications and the use of spare parts and accessories that are not sold or recommended by the manufacturer of the equipment can cause fires, electric shocks and injuries.

Keep these operating instructions within easy reach and give them to all users!

European Low Voltage Directive

The MICROMASTER Vector and MIDIMASTER Vector product range complies with the requirements of the Low Voltage

Directive 73/23/EEC as amended by Directive 93/68/EEC. The units are certified for compliance with the following standards:

EN 60146-1-1 Semiconductor converters — General requirements and line commutated converters

EN 60204-1 Safety of machinery — Electrical equipment of machines

European Machinery Directive

The MICROMASTER Vector and MIDIMASTER Vector inverter series do not fall under the scope of the Machinery Directive.

However, the products have been fully evaluated for compliance with the essential Health & Safety requirements of the directive when used in a typical machine application. A Declaration of

Incorporation is available on request.

European EMC Directive

When installed according to the recommendations described in this manual, the MICROMASTER Vector and MIDIMASTER

Vector fulfil all requirements of the EMC Directive as defined by the EMC Product Standard for Power Drive Systems

EN61800-3.

Underwriters Laboratories

ISO 9001

UL and CUL listed power conversion equipment 5B33 for use in a pollution degree 2 environment

Siemens plc operates a quality management system, which complies with the requirements of ISO 9001.

G85139-H1751-U529-D1

4/8/99

© Siemens plc 1999

4

IMPORTANT

WARNING

In order to ensure correct and safe operation, it is vital the following instructions are strictly adhered to:

Operation of a motor with a higher nominal power than the inverter or a nominal power less than half that of the inverter is not allowed. The inverter must only be operated when the nominal current in P083 exactly matches the motor rating plate nominal current.

The motor data parameters must be accurately entered (P080-P085) and an autocalibration performed (P088=1) before the motor is started. Unstable/unpredictable motor operation (eg. reverse rotation) may result if this is not done. If this instability occurs, the mains supply to the converter must be disconnected.

When using the analogue input, the DIP switches must be correctly set and the analogue input type selected (P023) before enabling the analogue input with P006. If this is not done, the motor may start inadvertently.

© Siemens plc 1999

5

G85139-H1751-U529-D1

4/8/99

English

1. OVERVIEW

1. OVERVIEW

The MICROMASTER Vector (MMV) and MIDIMASTER Vector (MDV) are a standard range of inverters with sensorless vector capability suitable for controlling the speed of 3 phase motors. Various models are available, ranging from the compact 120 W MICROMASTER Vector up to the 75 kW MIDIMASTER Vector.

Sensorless vector control allows the inverter to calculate the changes required in output current and frequency in order to maintain the desired motor speed across a wide range of load conditions.

For additional product information such as application examples, part numbers, operation with long cables etc, please refer to catalog DA64 or to http://www.con.siemens.co.uk

Features:

Easy to install, program and commission.

Overload capability 200% for 3s followed by 150% for 60s.

High starting torque and accurate motor speed regulation by vector control.

Optional integrated RFI filter on single-phase input inverters MMV12 — MMV 300, and three phase input inverters MMV220/3 to MMD750/3

Fast Current Limit (FCL) for reliable trip-free operation.

0 to 50

°

C temperature range (0 to 40

°

C for MIDIMASTER Vector)

Closed loop process control using a standard Proportional, Integral, Derivative (PID) control loop function.

15 V, 50 mA supply provided for feedback transducer.

Remote control capability via RS485 serial link using the USS protocol with the ability to control up to 31 inverters via the USS protocol.

Factory default parameter settings pre-programmed for European, Asian and North American requirements.

Output frequency (and hence motor speed) can be controlled by:

(1) Frequency setpoint using the keypad.

(2) High resolution analogue setpoint (voltage or current input).

(3) External potentiometer to control motor speed.

(4) 8 fixed frequencies via binary inputs.

(5) Motorised potentiometer function.

(6) Serial interface.

Built-in DC injection brake with special COMPOUND BRAKING.

Built-in brake chopper for external resistor (MMV).

Acceleration/deceleration times with programmable smoothing.

Two fully-programmable relay outputs (13 functions).

Fully-programmable analogue outputs (1 for MMV, 2 for MDV).

External Options connector for optional multi-language Clear Text Display (OPM2), optional PROFIBUS-

DP module or CANbus module

Dual motor-parameter sets available if Clear Text Display (OPM2) fitted.

Automatic recognition of 2,4,6 or 8-pole motors by software.

Integral software controlled cooling fan.

Side-by-side mounting without additional clearance.

Optional protection to IP56 (NEMA 4/12) for MIDIMASTER Vector inverters.

G85139-H1751-U529-D1

4/8/99 6

© Siemens plc 1999

1. OVERVIEW

1.1 Installation — General notes

Environmental Requirements

Hazard

Temperature

Notes

Min. Operating = 0

°

C

Max. Operating = 50

°

C (MMV)

Max. Operating = 40

°

C (MDV)

Altitude

If the Inverter is to be installed at an altitude >1000m, derating will be required.(Refer to DA64 Catalogue)

Shock

Do not drop the inverter or expose to sudden shock.

Vibration

Do not install the inverter in an area where it is likely to be exposed to constant vibration.

Electro-

Magnetic

Radiation

Do not install the inverter near sources of electromagnetic radiation.

Atmospheric

Pollution

Water

Do not install the inverter in an environment, which contains atmospheric pollutants such as dust, corrosive gases, etc.

Take care to site the inverter away from potential water hazards. e.g. Do not install the inverter beneath pipes that are subject to condensation. Avoid installing the inverter where excessive humidity and condensation may occur.

Overheating

Ensure that the inverter’s air vents are not obstructed, including the air vent at the front of the unit, which should be at least 15mm from any obstruction.

Additional ventilation may be required for horizontal mounting.

Make sure that there is an adequate air-flow through the cabinet, as follows:

1. Using the formula below, calculate the air-flow required:

Air-flow (m3 / hr) = (Dissipated Watts /

T) x 3.1

2. If necessary, install cabinet cooling fan(s).

Note:

Dissipation (Watts) = 3-5% of inverter rating.

T = Allowable temperature rise within cabinet in °C.

3.1 = Specific heat of air at sea level.

Ideal Installation

Figure: 1.1

100 mm

160 mm

English

Note: The Plastic Material of the case can be degraded by oil or grease. Care should be taken to ensure that the mounting surface and fixings are thoroughly degreased before use.

© Siemens plc 1999

7

G85139-H1751-U529-D1

4/8/99

English

1.2 Wiring Guidelines to Minimise the Effects of EMI

1. OVERVIEW

The inverters are designed to operate in an industrial environment where a high level of Electro-Magnetic

Interference (EMI) can be expected. Usually, good installation practices will ensure safe and trouble-free operation. If problems are encountered, the following guidelines may prove useful. In particular, grounding of the system at the inverter, as described below, may prove effective. Figures 1.2.1-1.2.3 illustrate how an RFI suppression filter should be installed and connected to the MICROMASTER Vector.

(1) Ensure that all equipment in the cubicle is well earthed using short, thick earthing cable connected to a common star point or busbar. It is particularly important that any control equipment that is connected to the inverter (such as a PLC) is connected to the same earth or star point as the inverter via a short, thick link. Flat conductors (e.g. braids or metal brackets) are preferred as they have lower impedance at high frequencies.

The return earth from motors controlled by the inverter should be connected directly to the earth connection (PE) on the associated inverter.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

On the MIDIMASTER Vector, use saw-tooth washers when mounting the inverter and ensure that a good electrical connection is made between the heatsink and the panel, removing paint if necessary.

Wherever possible, use screened leads for connections to the control circuitry. Terminate the ends of the cable neatly, ensuring that unscreened wires are as short as possible. Use cable glands whenever possible.

Separate the control cables from the power connections as much as possible, using separate trunking, etc. If control and power cables cross, arrange the cables so that they cross at 90° if possible.

Ensure that contactors in the cubicle are suppressed, either with R-C suppressors for AC contactors or ‘flywheel’ diodes for DC contactors, fitted to the coils. Varistor suppressors are also effective. This is particularly important if the contactors are controlled from the relay on the inverter.

Use screened or armoured cables for the motor connections and ground the screen at both ends via the cable glands.

If the drive is to be operated in an Electro-magnetic noise-sensitive environment, the RFI filter should be used to reduce the conducted and radiated interference from the inverter. For optimum performance, there should be a good conductive bond between filter and metal mounting plate.

For Frame Size A units (Fig.1.2.1), the flat earth braid strap, supplied with the unit, should be fitted to minimise emissions.

G85139-H1751-U529-D1

4/8/99 8

© Siemens plc 1999

1. OVERVIEW

CONTROL

CABLE

MAINS POWER INPUT

FOOTPRINT FILTER

METAL BACK-PLATE

EARTH BRAID

Fix motor and control cable screens securely to metal back plate using suitable clips.

EARTH BRAID

Figure 1.2.1: Wiring guidelines to minimise effects of EMI — MICROMASTER Vector Frame Size A

CONTROL

CABLE

English

MAINS POWER INPUT

FOOTPRINT FILTER

METAL BACK-PLATE

CONTROL

CABLE

Fix motor and control cable screen securely to metal back plate using suitable clips.

Figure 1.2.2: Wiring guidelines to minimise effects of EMI — MICROMASTER Vector Frame Size B

© Siemens plc 1999

9

G85139-H1751-U529-D1

4/8/99

English 1. OVERVIEW

MAINS POWER INPUT

FOOTPRINT FILTER

METAL BACK-PLATE

Fix motor and control cable screen securely to metal back plate using suitable clips.

Figure 1.2.3: Wiring guidelines to minimise effects of EMI MICROMASTER Vector Frame Size C

On no account must safety regulations be compromised when installing inverters!

1.3 Electrical Installation — General Notes

1.3.1 Operation with Unearthed (IT) Supplies

The MICROMASTER Vector will operate from unearthed supplies and will continue to operate if an input phase is shorted to earth. If an output phase is shorted to earth, the MICROMASTER Vector will trip and indicate F002.

Note: MIDIMASTER Vector inverters will operate from unearthed supplies provided that the switching frequency is set to 2kHz (P076 = 6 or 7).

1.3.2 Operation with Residual Current Device (RCD)

The MICROMASTER and MIDIMASTER Vector inverters will operate without nuisance tripping with an RCD

(also called ELCBs or RCCBs) fitted to the input providing:

A type B RCD is used.

The trip limit of the RCD is 300mA.

The neutral of the supply is earthed.

Only one inverter is supplied from each RCD.

The output cables are less than 50m (screened ) or 100m (unscreened).

1.3.3 Installation after a Period of Storage

It is necessary to reform the capacitors in the inverter if the unit has been stored for a prolonged period:

Period of storage 1 year old or less:

No reforming is required.

1 — 2 years old:

Apply power to the inverter one hour before giving the run command (preparation time 1 hour).

2 — 3 years old:

G85139-H1751-U529-D1

4/8/99 10

© Siemens plc 1999

1. OVERVIEW English

Use a variable AC supply. Apply 25% of input voltage for 30 minutes. Increase volts to 50% for a further

30 minutes. Increase volts to 75% for further 30 minutes. Increase volts to 100% for a further 30 minutes.

Now ready for run signal (preparation time 2 hours).

3 years and over:

As with 2 — 3 years, but the steps should be 2 hours (preparation time 8 hours).

1.3.4 Operation with Long Cables

Motor cable lengths vary depending on type of cable, power rating and voltage rating — and in some cases can be as long as 200m without the need for additional chokes. Refer to DA64 catalogue for further details.

In any case, all inverters will operate at full specification with cable lengths up to 25m for screened cable or

50m for unscreened cables.

© Siemens plc 1999

11

G85139-H1751-U529-D1

4/8/99

English 2. INSTALLATION – MICROMASTER Vector

2. INSTALLATION — MICROMASTER Vector

2.1 Mechanical Installation

WARNING

THIS EQUIPMENT MUST BE EARTHED.

To guarantee safe operation of the equipment it must be installed and commissioned properly by qualified personnel in compliance with the warnings laid down in these operating instructions.

Take particular note of general and regional installation safety regulations regarding work on dangerous voltage installations (e.g. VDE), as well as the relevant regulations regarding the correct use of tools and personal protective gear.

The mains input and motor terminals carry dangerous voltages even if the inverter is not operating.

Use insulated screwdrivers on these terminal blocks.

G85139-H1751-U529-D1

4/8/99 12

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector English

MICROMASTER Vector inverters must be secured to a suitable vertical surface by bolts, washers and nuts.

Frame size A units need two bolts or can be DIN rail mounted. Frame size B and C units require four bolts.

W

A

H

H1

W

D

B

H1

H

D

W

C

H1

H

Figure 2.1.1: MICROMASTER Vector — Frame Size A, B and C

© Siemens plc 1999

13

D

G85139-H1751-U529-D1

4/8/99

English 2. INSTALLATION – MICROMASTER Vector

W1

F

H1

Depth D

H H2

DIN Rail

H2

H1

Depth D

H

W

W

∅ = 4.5 mm

2 bolts M4

2 nuts M4

2 washers M4

Tightening Torque

(with washers fitted)

2.5 Nm Frame size A and B

3.0 Nm Frame size C

= 4.8 mm (B)

= 5.6 mm (C)

Frame size B:

4 bolts M4

4 nuts M4

4 washers M4

Frame size C:

4 bolts M5

4 nuts M5

4 washers M5

Frame Size A Frame Sizes B and C

Model

MMVxxx

1 AC 230V

Class A

Filter

MMVxxx/2

1/3 AC

230V

Without

Filter

MMVxxx/3

3 AC 380 —

500V

Without

Filter

Frame Sizes

(all measurements in mm)

MMV12

MMV25

MMV37

MMV55

MMV75

MMV110

MMV150

MMV220

MMV300

MMV400

MMV550

MMV750

A

A

A

A

A

B

B

C

C

A

A

A

A

A

B

B

C

C

C

A

A

A

A

A

B*

B*

C*

C*

C*

H W D H1 H2 W1 F

A = 147 x 73 x 141 160 175 — 55

B = 184 x 149 x 172 174 184 138 —

C = 215 x 185 x 195 204 232 174 —

* These units also available with built in filter e.g. MMV220/3F

Figure 2.1.2: Mechanical Installation Diagram — MICROMASTER Vector

G85139-H1751-U529-D1

4/8/99 14

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector

2.2 Electrical Installation

Read the Wiring Guidelines given in section 1.2 before commencing installation.

The electrical connectors on the MICROMASTER Vector are shown in Figure 2.2.1.

Asynchronous and synchronous motors can be connected to the

MICROMASTER Vector inverters either individually or in parallel.

Note:If a synchronous motor is connected to the inverter, the motor current may be two and a half to three times greater than that expected, so, the inverter must be de-rated accordingly. Also, the inverter cannot be used in vector mode when connected to a synchronous motor (P077= 0 or 2).

Terminal 23

Terminal 1

Terminal 12

PE L/L1 N/L2 L3

PE U V W

Brake Terminals

(rear)

English

DIP Switches

Terminal 11

Terminal 22

Mains Input Power

Terminals

Motor Terminals

L3

L2

L1

N

FUSES

SINGLE PHASE

CONTACTOR

PE

FILTER (Class B only) MICROMASTER Vector

PE

L

N

U

V

PE

W

L3

L2

L1

FUSES

CONTACTOR

TYPICAL INSTALLATION

FILTER

PE

PE

MICROMASTER Vector

L3

L2

L1

PE

U

V

W

THREE PHASE

Figure 2.2.1: MICROMASTER Vector Connectors — Frame Size A

© Siemens plc 1999

15

U

V

W

MOTOR

U

V

W

MOTOR

G85139-H1751-U529-D1

4/8/99

English 2. INSTALLATION – MICROMASTER Vector

WARNING

Make sure that the input power supply is isolated before making or changing any connections to the unit.

Ensure that the motor is configured for the correct supply voltage. Single/three phase 230 V units must not be connected to a 400 V three phase supply.

When synchronous machines are connected or when coupling several motors in parallel, the inverter must be operated with voltage/frequency control characteristic (P077= 0 or 2) and slip compensation must be disabled (P071 = 0).

Note: This equipment is suitable for use in a circuit capable of delivering not more than 100,000 symmetrical amperes (rms), for a maximum voltage of 230 / 460 V * when protected by a time delay fuse *.

* As detailed in section 8.

Frame size A: the power terminals are directly available beneath the inverter. For the control terminals lift the flap in the front cover of the inverter. (As shown in Figure 2.2.1)

Frame size B: use a small bladed screwdriver (as shown in Figure 2.2.2) to release the terminal cover of the inverter and allow it to swing down to hang beneath the inverter.

Frame size C: use a small bladed screwdriver (as shown in Figure 2.2.3) to release the gland plate and the fan housing; allow them both to swing down to hang beneath the inverter.

Connect the cables to the power and control terminals in accordance with the information supplied in this section. Ensure that the leads are connected correctly and the equipment is properly earthed.

CAUTION

The control, power supply and motor leads must be laid separately. They must not be fed through the same cable conduit/trunking.

High voltage insulation test equipment must not be used on cables connected to the inverter.

Use screened cable for the control cable, Class 1 60/75 o

C copper wire only. Tightening torque for the field wiring terminals is 1.1 Nm.

A small bladed screwdriver, max. 3.5 mm will be required to operate the control terminal WAGO cable clamp connectors as shown in Figure 2.2.4.

To tighten up the power and motor terminal screws use a 4 — 5 mm cross-tip screwdriver.

When all power and control connections are complete:

Frame size A : lower the flap in the front cover of the inverter.

Frame size B : lift and secure the terminal cover to the inverter.

Frame size C : lift and secure the gland plate and the fan housing to the inverter.

G85139-H1751-U529-D1

4/8/99 16

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector

2.2.1 Power and Motor Connections — MICROMASTER Vector — Frame Size A

English

1. Ensure that the power source supplies the correct voltage and is designed for the necessary current (see

section 8) . Ensure that the appropriate circuit breakers with the specified current rating are connected between the power supply and inverter (see section 8) .

2. Fit the earth braid strap, supplied with the unit, between the PE faston connector and the mounting surface. Ensure there is a good electrical connection between the mounting surface and the earth strap.

3. Connect the power input directly to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) as shown in Figure 2.2.1, using a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.

4. Use a 4-core screened cable to connect the motor. The cable is connected to the motor terminals U, V, W and the earth (PE) shown in Figure 2.2.1.

Note: For operation with cables longer than 25m see section 1.3.4

5. If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and B- terminals at the rear of the inverter.

Note: These connections have to be made with the inverter dismounted from the mounting surface. Care must be taken routing the leads through the moulded clips to prevent trapping and chafing when the unit is mounted and secured to the selected surface. Connect the control leads as shown in Figures

2.2.4 and 2.2.6.

© Siemens plc 1999

17

G85139-H1751-U529-D1

4/8/99

English 2. INSTALLATION – MICROMASTER Vector

2.2.2 Power and Motor Connections — MICROMASTER Vector — Frame Size B

The terminal arrangement for frame size B is similar to frame size A

Refer to Figures 2.2.1 and 2.2.2 and proceed as follows:

B

A

1. Insert the blade of a small screwdriver into slot A in the front of the inverter and press in the direction of the arrow.

At the same time, press down on tab B at the side of the access panel.

Power Connections Access Diagram — Frame Size B

2. This will release the access panel, which will then swing down on its rear-mounted hinges.

Note: The access panel can be removed from the inverter when at an angle of approximately 30° to the horizontal. If allowed to swing lower, the panel will remain attached to the inverter.

Removal of Terminal Cover- Frame Size B

F

J

G

H

D

E

3. Remove the earthing screw C from the gland plate.

4. Press both release catches D and E to release the gland plate and then remove the metal gland plate from the inverter.

C

F: Control cable input

G: Mains cable input

H: Motor cable output

J: Braking resistor/ DC link cable input

Figure 2.2.2 : Power and Motor Connectors MICROMASTER Vector Frame Size B

G85139-H1751-U529-D1

4/8/99 18

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector English

5. Ensure that the power source supplies the correct voltage and is designed for the necessary current.

Ensure that the appropriate circuit-breakers with the specified current rating are connected between the power supply and inverter see section 8.

6. For the power input, use a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.

7. Use a 4-core screened cable to connect the motor.

8. Carefully measure and cut the cable leads for power connections, motor connections and braking resistor connections (if required) before feeding the screened cables through the glands in the metal gland plate provided (see Figure 2.2.2) and securing the glands.

9. Carefully measure and cut the cable leads for the control connections (if required). Feed the control cable through the correct gland (see Figure 2.2.2) and secure the gland to the metal gland-plate.

10. Carefully feed the power and control leads through the correct holes in the inverter housing.

11. Secure the metal gland plate to the underside of the inverter. Fit and tighten the earth securing screw.

12. Connect the power input leads to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) shown in Figure 2.2.1 and torque down the screws.

13. Connect the motor leads to the motor terminals U, V, W and the earth (PE) (shown in Figure 2.2.1) and torque down the screws.

Note: For operation with cables longer than 25m see section 1.3.4

14. If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and B- terminals under the inverter.

15. Connect the control leads as shown in Figures 2.2.4 and 2.2.6.

© Siemens plc 1999

19

G85139-H1751-U529-D1

4/8/99

English 2. INSTALLATION – MICROMASTER Vector

2.2.3 Power and Motor Connections — MICROMASTER Vector — Frame Size C

G

F

C

E

D

B

A

A: Fan housing opening tab

B & C: Gland plate release tabs

D:

E:

Control cable input

Mains cable input

F:

G:

Motor cable output

Braking resistor/ DC link cable input

H

J

H:

J:

Fan connector

Fan Housing removal tab

To remove fan housing and fan disconnect fan connector ‘H’, release tab ‘J’ in direction shown and remove fan and housing in same direction.

Figure 2.2.3: Power Connections Access Diagram — Frame Size C

G85139-H1751-U529-D1

4/8/99 20

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector English

The terminal arrangement for frame size C is similar to frame size A.

Refer to Figures 2.2.1 and 2.2.3 and proceed as follows:

1. While supporting the fan housing with one hand, insert the blade of a screwdriver into slot A on the underside of the inverter and press upwards to release the securing tab. Lower the fan housing, allowing it to swing out to the right on its side-mounted hinges.

2. Applying pressure to the gland plate release clips B and C in the direction of the arrows. Swing the plate out to the left on its side-mounted hinges.

3. Ensure that the power source supplies the correct voltage and is designed for the necessary current (see

section 8) . Ensure that the appropriate circuit-breakers with the specified current rating are connected between the power supply and inverter (see section 8) .

4. For the power input, use a 3-core cable for single phase units or a 4-core cable for three phase units. For the cross-section of each core see section 8.

5. Use a 4-core screened cable to connect the motor.

6. Carefully measure and cut the cable leads for power connections, motor connections and braking resistor connections (if required) before feeding the screened cables through the glands in the metal gland plate and securing the glands.

7. Carefully measure and cut the cable leads for the control connections (if required). Feed the control cable through the correct gland and secure the gland to the metal gland-plate.

8. Connect the power input leads to the power terminals L/L1 — N/L2 (1 phase) or L/L1, N/L2, L3 (3 phase), and earth (PE) (shown in Figure 2.2.1) and torque down the screws.

9. Connect the motor leads to the motor terminals U, V, W and the earth (PE) (shown in Figure 2.2.1) and torque down the screws.

Note: For operation with cables longer than 25m see section 1.3.4

10.If required, secure Faston connectors to the braking resistor leads and fit the connectors to the B+/DC+ and

B- terminals under the inverter.

11.Connect the control leads as shown in Figures 2.2.4 and 2.2.6

© Siemens plc 1999

21

G85139-H1751-U529-D1

4/8/99

English

2.2.4 Control Connections

2. INSTALLATION – MICROMASTER Vector

Insert small blade screwdriver (max. 3.5 mm) as shown, while inserting control wire from below. Withdraw the screwdriver to secure the wire.

Output Relays max. 2.0A / 110 V AC

0.8 A / 230 V AC (overvoltage cat.2) or

2A / 30 V DC

(resistive rating)

P10+ 0V AIN+ AINDIN1 DIN2 DIN3 DIN4 P15+

PIDIN+ PIDIN-

1 2

23

3 4

24 25

5

26

6 7 8 9 10 11

Power Supply

(+10 V, max. 10 mA)

Analogue Input 1

-10 V to +10 V

0/2

10 V

(input impedance 70 k Ω ) or

0/4

20 mA

(resistance = 300

)

Analogue input 2

0

10 V or

0

20 mA

Digital Inputs

(7.5 — 33 V, max. 5 mA)

Power Supply for

PID Feedback

Transducer

(+15 V, max. 50 mA)

AOUT+ AOUTPTC PTC DIN5 DIN6

12 13 14 15 16 17 18 19 20

21

22

RL1A

(NC)

RL1B

(NO)

RL1C

(COM)

RL2B

(NO)

RL2C

(COM)

Analogue Output

0/4 — 20 mA

(500 Ω load)

Digital Inputs

(7.5 — 33 V, max.5 mA)

Motor temp. protection input

Note: For PTC motor thermal protection, P087 = 1

5

9

1

6

0V

N-

P+

PE (case)

5V (max. 250mA)

PE

N-

P+

RS485

(for USS protocol)

P5V+

Control Terminals

Front Panel

RS485 D-type

Figure 2.2.4: Control Connections — MICROMASTER Vector

Note: Do not use the internal RS485 connections (terminals 24 and 25) if you intend using the external

RS485 connection on the front panel e.g. to connect a Clear Text Display (OPM2).

DIP switches select between voltage (V) and current (I) analogue inputs and also select either a voltage or current feedback signal (see Figure 4.1.2: DIP Selector Switches). These switches can only be accessed when the flap in the the front cover is raised (see Figure 2.2.1).

G85139-H1751-U529-D1

4/8/99 22

© Siemens plc 1999

2. INSTALLATION – MICROMASTER Vector English

2.2.5 External Motor Thermal Overload Protection

When operated below rated speed, the cooling effect of fans fitted to the motor shaft is reduced. so that most motors require de-rating for continuous operation at low frequencies. To ensure that motors are protected against overheating under these conditions it is strongly recommended that a PTC temperature sensor is fitted to the motor and connected to the inverter control terminals as shown in Figure 2.2.5.

Note: To enable the motor overload protection trip function, set parameter P087=1

14

MOTOR

PTC

Inverter Control

Terminals

15

Figure 2.2.5: Motor Overload PTC Connection.

© Siemens plc 1999

23

G85139-H1751-U529-D1

4/8/99

English

2.2.6 Block Diagram — MICROMASTER Vector

2. INSTALLATION – MICROMASTER Vector

PE

1 — 3 AC 208 — 230 V

3 AC 380 — 500 V

SI

PE

L/L1, N/L2 or

L/L1, N/L2, L3

≥ 4.7 k

1

V:

0 — 10 V

2 — 10 V

OR

AIN1+

2

AIN1-

3

4

I:

0 — 20 mA

4 — 20 mA

OR

+

24 V

DIN1

DIN2

DIN3

DIN4

AIN2/PID+

7

8

9

5

6

10

AIN2/PID —

11

AOUT+

12

AOUT-

Motor

PTC

13

14

DIN5

DIN6

15

16

17

+15V

+10V

0V

AD

AD

DA

RL1

18

19

20

RL2

21

22

N-

P+

23

24

25

26

PE

RS485

5V+

CPU

Jog

P

RS485

DIP Switches

1 2 3 4 5

~

3

~

B+/DC+

R

B-

PE U, V, W

M

Figure 2.2.6 Block Diagram — MICROMASTER Vector

G85139-H1751-U529-D1

4/8/99

© Siemens plc 1999

24

3. INSTALLATION – MIDIMASTER Vector

3. INSTALLATION — MIDIMASTER Vector

3.1 Mechanical Installation

English

WARNING

THIS EQUIPMENT MUST BE EARTHED.

This equipment must not be energised with the cover removed.

To guarantee the safe operation of the equipment it must be installed and commissioned properly by qualified personnel in compliance with the warnings laid down in these operating instructions.

Take particular note of the general and regional installation and safety regulations regarding work on high voltage installations (e.g. VDE), as well as the relevant regulations regarding the correct use of tools and personal protective gear.

Mount the inverter vertically to a flat, non combustible surface. Make sure that the unobstructed clearance for each of the cooling inlets and outlets above and below the inverter is at least 100 mm.

Environmental requirements are described in section 1.1

The MIDIMASTER Vector must be secured to a suitable load-bearing wall by M8 bolts, washers and nuts.

Frame size 4, 5 and 6 units need four bolts. Frame size 7 units should be lifted using the two lifting holes and secured by six bolts.

W

W

W

W

H

H

H

H

D

D D

D

Figure 3.1.1: MIDIMASTER Vector — Frame Size 4, 5, 6 and 7

© Siemens plc 1999

25

G85139-H1751-U529-D1

4/8/99

English

W1

H1

Depth D

H

3. INSTALLATION – MIDIMASTER Vector

W

Frame Sizes 4, 5 and 6

W1

= 8.5 mm

4 bolts M8

4 nuts M8

4 washers M8

H1

H

Depth D

= 8.5 mm

W

Frame Size 7

Figure 3.1.2: Mechanical Installation Diagram — MIDIMASTER Vector

6 bolts M8

6 nuts M8

6 washers M8

G85139-H1751-U529-D1

4/8/99 26

© Siemens plc 1999

3. INSTALLATION – MIDIMASTER Vector English

Model

MDV220/4

MDV400/4

MDV550/2

MDV550/4

MDV750/2

MDV750/3

MDV750/4

MDV1100/2

MDV1100/3

MDV1100/4

MDV1500/2

MDV1500/3

MDV1500/4

MDV1850/2

MDV1850/3

MDV1850/4

MDV2200/2

MDV2200/3

MDV2200/4

MDV3000/2

MDV3000/3

MDV3000/4

MDV3700/2

MDV3700/3

MDV3700/4

MDV4500/2

MDV4500/3

MDV5500/3

MDV7500/3

7

7

7

6

6

5

6

4

4

3 AC 208

— 240 V

3AC 380

-500 V

Frame Size

4

5

4

6

6

7

7

7

5

6

3 AC 525 —

575 V

6

6

6

5

5

4

4

4

4

4

Frame Sizes ( mm)

IP21 / NEMA 1

W H D W1 H1

4 = 275 x 450 x 210 235 430

5 = 275 x 550 x 210 235 530

6 = 275 x 650 x 285 235 630

7 = 420 x 850 x 310 374 830

IP20/NEMA 1 with integrated EMC class A filter

W H D W1 H1

4 = 275 x 700 x 210 235 680

5 = 275 x 800 x 210 235 780

6 = 275 x 920 x 285 235 900

7 = 420 x 1150x 310 374 1130

IP56 / NEMA 4/12

W H D W1 H1

4 = 360 x 675 x 376 313 649

5 = 360 x 775 x 445 313 749

6 = 360 x 875 x 505 313 849

7 = 500 x 1150 x 595 451 1122

Notes

Note:

Dimension D includes the front control panel.

If a Clear Text Display

(OPM2) is to be included, an additional 30mm will be required.

Filtered MIDIMASTER

Vector versions are available up to 460V mains supply only.

Note:

Dimension D includes the front panel access door.

Figure: 3.1.2 (continued)

© Siemens plc 1999

27

G85139-H1751-U529-D1

4/8/99

English 3. INSTALLATION – MIDIMASTER Vector

3.2 Electrical Installation

Read the Wiring Guidelines given in section 1.2 before commencing installation.

The electrical connectors on the MIDIMASTER Vector are shown in Figure 3.2.1.

DC-

DC+

PE

L1

L2 L3

FS7 units

U V W

DC-

DC+

PE

Jog

P

L1 L2

FS6 units

L3 U V W

DIP switches

Note: Switch 6 not used

1 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

27

26

25

24

23

22

21

FS6 units

Control terminals

L1 L2 L3

FS4/5 units

PE PE DC-DC+ U V W

Power and

Motor terminals

Figure 3.2.1: MIDIMASTER Vector Connectors

G85139-H1751-U529-D1

4/8/99 28

© Siemens plc 1999

3. INSTALLATION – MIDIMASTER Vector English

To gain access to the power and control terminals:

Frame size 4, 5 : remove the four M4 screws from the front cover and remove the cover from the inverter.

Frame size 6: remove the six M4 screws from the front cover and remove the cover from the inverter.

Frame size 7: remove the four M4 screws from the lower front cover and remove the lower front cover from the inverter.

WARNING

Ensure that the motor is configured for the correct supply voltage.

Make sure that the input power supply is isolated before making or changing any connections.

When synchronous machines are connected or when coupling several motors in parallel, the inverter must be operated with voltage/frequency control characteristic (P077= 0 or 2) and slip compensation must be disabled (P071 = 0).

CAUTION

The control, power supply and motor leads must be laid separately. They must not be fed through the same cable conduit/trunking.

High voltage insulation test equipment must not be used on cables connected to the inverter.

Use screened cable for the control cable, Class 1 60/75 o

C copper wire only.

Feed the cables through the correct glands in the base of the inverter. Secure the cable glands to the inverter and connect the leads to the power, motor and control terminals in accordance with the information supplied in sections 3.2.1 and 3.2.2. Ensure that the leads are connected correctly and the equipment is properly earthed.

Frame size 4 and 5: Tighten up each of the power and motor terminal screws to 1.1 Nm.

Frame size 6: Tighten up each of the power and motor terminal Allen-screws to 3.0 Nm.

Frame size 7: Tighten up each of the M12 power and motor terminal nuts to 30 Nm.

Secure the front cover to the inverter when all connections are complete.

3.2.1 Power and Motor Connections

1. Ensure that the power source supplies the correct voltage and the necessary current. Ensure that the appropriate circuit-breaker or fuses with the specified current rating are connected between the power supply and inverter (see section 8) .

2. Connect the power input to the power terminals L1, L2, L3 (3 phase) and earth (PE) (shown in Figure 3.2.1) using a 4-core cable and lugs to suit the cable size. For the cross-section of each core, see section 8.

3. Use a 4-core screened cable and suitable lugs to connect the motor leads to the motor terminals U, V, W and earth (PE) (shown in Figure 3.2.1).

Note: For operation with cables longer than 25m see section 1.3.4

4. If required, connect the braking unit leads to the DC- and DC+ terminals.

5. Tighten all the power and motor terminals.

Asynchronous and synchronous motors can be connected to the MIDIMASTER Vector inverters either individually or in parallel.

Note : If a synchronous motor is connected to the inverter, the motor current may be two and a half to three times greater than that expected so the inverter must be de-rated accordingly.

© Siemens plc 1999

29

G85139-H1751-U529-D1

4/8/99

English 3. INSTALLATION – MIDIMASTER Vector

3.2.2 Control Connections

Control connections to the MIDIMASTER Vector are made via two terminal blocks located as shown in Figure

3.2.1. The terminal blocks are of a two-part design. The part containing the screw terminals can be unplugged from it’s housing before wires are connected. When all connections to the terminals have been made (as

shown in Figures 3.2.1 and 3.2.2) and secured, the terminal block must be plugged firmly back into it’s housing.

P10+ 0V AIN+ AINDIN1 DIN2 DIN3

DIN4

P15+

PIDIN+

PIDINA1OUT+ AOUT- PTC PTC DIN5 DIN6

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20

RL1A

(NC)

RL1B

(NO)

RL1C

(COM)

Analogue input 2

0

⇒10 V or

0

⇒20 mA

Power Supply

(+10 V, max. 10 mA)

Digital Inputs

(7.5 — 33 V, max. 5 mA)

Analogue Input 1

-10 V to +10 V

0/2

⇒ 10 V

(input impedance 70 k

Ω) or

0/4

⇒ 20 mA )

(Resistance = 300

Ω)

Power Supply for PID Feedback

Transducer

(+15 V, max. 50 mA)

Output Relays (RL1 and RL2) max. 0.8 A / 230 V AC

(overvoltage cat.2)

2.0 A / 30 V DC

(resistive rating)

A2OUT+

Analogue Output 1

0/4 — 20 mA

(500

Ω load)

Digital Inputs

(7.5 — 33 V, max. 5 mA)

Motor temp.protection input

Note: For PTC motor thermal

protection, P087 = 1

21

22

23 24 25 26

27

5

9

6

1

RL2B

(NO)

RL2C

(COM)

P5V+

P+ N-

RS485

(for USS protocol)

PE

Control Terminals

Analogue Output 2

0/4 — 20 mA

(500

Ω load) use with terminal 13

0V

N-

P+ PE (case)

5V(max.250mA)

Front Panel

RS485 D-type

Figure 3.2.2: Control Connections — MIDIMASTER Vector

Note: Do not use the internal RS485 connections (terminals 24 and 25) if you intend using the external

RS485 connection on the front panel e.g. to connect an Clear Text Display (OPM2).

DIP switches select between voltage (V) and current (

I

) analogue inputs. They also select between either a voltage or current PID feedback signal (see Figure 4.1.2: DIP Selector Switches). These switches can only be accessed when:

for Frame size 4, 5 and 6 the front cover is removed (see Figure 3.2.1).

for Frame size 7 the lower front cover is removed (see Figure 3.2.1).

3.2.3 Motor Overload Protection

When operated below rated speed, the cooling effect of fans fitted to the motor shaft is reduced. so that most motors require de-rating for continuous operation at low frequencies. For protection measures using a PTC see section 2.2.5.

G85139-H1751-U529-D1

4/8/99 30

© Siemens plc 1999

3. INSTALLATION – MIDIMASTER Vector

3.2.4 Block Diagram – MIDIMASTER Vector

≥4.7kΩ

1

V:

0 — 10 V

2 — 10 V

OR

AIN1+

2

AIN1-

3

4

I:

0 — 20 mA

4 — 20 mA

OR

+

24 V

DIN1

DIN2

DIN3

DIN4

AIN2/PID+

5

6

7

8

9

10

AIN2/PID —

11

A1OUT+

12

AOUT-

Motor

PTC

13

14

DIN5

DIN6

15

16

+15V

+10V

0V

AD

AD

DA

17

RL1

18

19

20

RL2

21

22

+5V

P+

N-

A2OUT+

AOUT-

23

24

25

26

27

13

RS485

PE

DA

CPU

PE

3 AC 208 — 230 V

3 AC 380 — 500 V

3 AC 525 — 575 V

PE

SI

L1, L2, L3

English

Jog

P

RS485

DIP Switches

1 2 3 4

5

(

Note:Switch 6 not used)

6

~

3

~

DC+

DC-

EBU

© Siemens plc 1999

31

PE U, V, W

M

G85139-H1751-U529-D1

4/8/99

English 4. CONTROLS & BASIC OPERATION

4. CONTROLS & BASIC OPERATION

4.1 Controls

CAUTION

The digital frequency setpoint has been set at 5.00 Hz in the factory. It is not necessary to enter a frequency setpoint via the

button or parameter P005 in order to test that the motor turns following a RUN command.

All settings must be entered by qualified personnel, paying particular attention to the safety precautions and warnings.

The parameter settings required can be entered using the three parameterisation buttons (P,

and

) on the front panel of the inverter. The parameter numbers and values are indicated on the four digit LED display.

LED Display

JOG

Button

FORWARD / REVERSE

Button

RUN

Button

UP / INCREASE

Frequency

Jog

STOP

Button

DOWN / DECREASE

Frequency

P

RS485

Interface

Parameterisation

Button

Removable

Cover Strip

Jog

Pressing this button while the inverter is stopped causes it to start and run at the preset jog frequency. The inverter stops as soon as the button is released. Pressing this button while the inverter is running has no effect. Disabled if P123 = 0.

Press to start the inverter. Disabled if P121 = 0.

LED Display

Press to stop the inverter. Press once for an OFF1 (see section 5.4). Press twice (or hold down) for an OFF2

(see section 5.4) to immediately remove voltage from the motor allowing the motor to coast to a halt without ramp-down.

Displays frequency (default), parameter numbers or parameter values (when P is pressed) or fault codes.

Press to change the direction of rotation of the motor. REVERSE is indicated by a minus sign (values <100) or the left decimal point flashing(values > 100). Disabled if P122 = 0

Press to INCREASE frequency. Used to change parameter numbers or values to higher settings during the parameterisation procedure. Disabled if P124 = 0.

Press to DECREASE frequency. Used to change parameter numbers or values to lower settings during the parameterisation procedure. Disabled if P124 = 0.

Press to access parameters. Disabled if P051 — P055 or P356 = 14 when using digital inputs. Press and hold to access higher resolution for some parameters. See section 6

P

Figure 4.1.1: Front Panel

G85139-H1751-U529-D1

4/8/99

© Siemens plc 1999

32

4. CONTROLS & BASIC OPERATION English

4.1.2 DIP Selector Switches

The five DIP selector switches have to be set in agreement with P023 or P323 according to the operation of the inverter. Figure 4.1.2 below, shows the settings of the switches for the different modes of operation.

Analogue input 1 configuration

Analogue input 2 (PID input) configuration

ON

OFF

1 2 3 4 5

6

Switch 6 not used

1 2 3

0 V to 10 V or

2 V to 10 V

-10 V to +10 V

0 to 20 mA or

4 to 20 mA

4

5

0 V to 10 V or

2 V to 10 V

0 to 20 mA or

4 to 20 mA

Note:

= ON position

Figure 4.1.2. DIP Selector Switches

© Siemens plc 1999

33

G85139-H1751-U529-D1

4/8/99

English 4. CONTROLS & BASIC OPERATION

4.2 Basic Operation

Refer to section 6 for a full description of each parameter.

4.2.1 General

(1) The inverter does not have a main power switch and is therefore live when the mains supply is connected. It waits with the output disabled until the RUN button is pressed or for the presence of a digital ON signal via terminal 5 (rotate right- default) or terminal 6 (rotate left- default) — see parameters

P051 to P055 and P356.

(2) If output frequency (P001 = 0) is selected as the display, the corresponding setpoint is flashed on the display approximately every 1.5 seconds while the inverter is stopped.

(3) The inverter is programmed at the factory for standard applications on Siemens standard motors.

When using other motors it is necessary to enter the specifications from the motor’s rating plate into parameters P080 to P085 (see Figure 4.2.1). Note: Access to these parameters is not possible

unless P009 = 002 or 003.

P081

P080

P084 cosϕ 0,81

50 Hz

220/380 V

/Y

0,61/0,35 A

0,12

kW

2745

/min

VDE 0530

3 Mot

IEC 56

IM B3

1LA5053-2AA20

Nr. E D510 3053

IP54 Rot. KL 16

60 Hz 440 V Y

0,34 A

0,14 kW cos ϕ

0,81

3310 /min

S.F. — 1,15

P083 P082 P085

12 022

I.Cl.F

Figure 4.2.1: Typical Motor Rating Plate Example

Note:

Ensure that the inverter is configured correctly to the motor, i.e. in the above example delta terminal connection is for 220 V.

4.2.2 Initial Testing

1. Check that all cables have been connected correctly (see section 2 or 3 ) and that all relevant product and plant/location safety precautions have been complied with.

2. Apply mains power to the inverter.

3. Ensure that it is safe to start the motor. Press the RUN button on the inverter. The display will change to 5.0 and the motor shaft will begin to turn. It will take 1 second for the inverter to ramp-up to 5 Hz.

4. Check that the motor rotates in the direction required. Press the FORWARD / REVERSE button if necessary.

5. Press the Stop button. The display will change to 0.0 and the motor will slow down, achieving a complete stop after 1 second.

G85139-H1751-U529-D1

4/8/99 34

© Siemens plc 1999

4. CONTROLS & BASIC OPERATION English

4.2.3 Basic Operation — 10 Step Guide

The basic method of setting up the inverter for use is described below. This method uses a digital frequency setpoint and requires only the minimum number of parameters to be changed from their default settings. It assumes that a standard Siemens four-pole motor is connected to the inverter (see section 4.2.1 if another

motor type is being used).

Step/Action

1. Apply mains power to the inverter.

The display will alternate between the actual frequency (0.0 Hz) and the requested frequency setpoint (5.0 Hz default).

Button Display

2. Press the parameterisation button.

3. Press the

button until parameter P005 is displayed.

4. Press P to display the present frequency setpoint (5 Hz is the factory default setting).

5. Press the

button to set the desired frequency setpoint

(e.g. 35 Hz).

6. Press P to lock the setting into memory.

7. Press the

button to return to P000.

8. Press P to exit the parameterisation procedure.

The display will alternate between the present output frequency and the frequency setpoint.

P

P

P

P

9. Start the inverter by pressing the RUN button.

The motor shaft will start to turn and the display will show that the inverter is ramping up to the setpoint of 35 Hz.

Note

The setpoint will be achieved after 7 seconds (default ramp-up time, defined by P002 is 10s to reach 50 Hz, the default maximum motor frequency, P013).

If required, the motor’s speed (i.e. frequency) can be varied directly by using the

∆ ∇

buttons. (Set P011 to 001 to enable the new frequency setting to be retained in memory during periods when the inverter is not running.)

10. Switch the inverter off by pressing the STOP button.(see section 5.4)

The motor will slow down and come to a controlled stop.

Note

Full stop will be achieved after 7 seconds (default ramp-down time, defined by P003 is 10 s from 50 Hz, the default value P013).

© Siemens plc 1999

35

G85139-H1751-U529-D1

4/8/99

English 5. OPERATING MODES

5. OPERATING MODES

5.1 Digital Control

For a basic start-up configuration using digital control, proceed as follows:

(1) Connect control terminal 9 to terminal 5 via a simple on/off switch. This sets up the inverter for clockwise rotation of the motor shaft (default).

(2)

(3)

(4)

(5)

(6)

(7)

Secure all covers to the unit and then apply mains power to the inverter. Set parameter P009 to 002 or

003 to enable all parameters to be adjusted.

Check that parameter P006 is set to 000 to specify digital setpoint.

Set parameter P007 to 000 to specify digital input (i.e. DIN1, terminal 5 in this case) and disable the front panel controls.

Set parameter P005 to the desired frequency setpoint.

Set parameters P080 to P085 in accordance with the rating plate on the motor (see Figure 4.2.1).

Set the external on/off switch to ON. The inverter will now drive the motor at the frequency set by P005.

(5)

(6)

(7)

(8)

(9)

5.2 Analogue Control

For a basic start-up configuration using analogue voltage control, proceed as follows:

(1) Connect control terminal 9 to terminal 5 via a simple on/off switch. This sets up the motor for clockwise rotation (default).

(2) Connect a 4.7 k

potentiometer to the control terminals as shown in Figures 2.2.4 and 2.2.6 (MMV)

(Figures 3.2.2 and 3.2.4 (MDV)) or connect pin 2 (0V) to pin 4 and a 0 — 10 V signal between pin 2 (0V) and pin 3 (AIN+).

(3)

(4)

Set the Analogue Input 1 Configuration DIP selector switches 1, 2 and 3 for voltage (V) input. (see

Figure 3.2.2-3.2.4, Section 4.1.2)

Secure all covers to the unit and then apply mains power to the inverter. Set parameter P009 to 002 or

003 to enable all parameters to be adjusted.

Set parameter P006 to 001 to specify analogue setpoint.

Set parameter P007 to 000 to specify digital input and disable the front panel controls.

Set parameters P021 and P022 to specify the minimum and maximum output frequency settings.

Set parameters P080 to P085 in accordance with the rating plate on the motor (see Figure 4.2.1).

Set the external on/off switch to ON. Turn the potentiometer (or adjust the analogue input control voltage) until the desired frequency is displayed on the inverter.

5.3 Motor Control Modes

The MICROMASTER Vector and MIDIMASTER Vector inverters have four different modes of operation which control the relationship between the voltage supplied by the inverter and the speed of the motor. The motor control mode of operation is selected at P077:

Linear voltage/frequency Operation.

Flux Current Control (FCC) which is used to maintain full flux conditions in the motor.

Quadratic voltage/frequency relationship which is used for pumps and fans.

Sensorless Vector. The inverter calculates the changes required in output voltage to maintain the desired motor speed.

These modes are described in more detail below.

G85139-H1751-U529-D1

4/8/99 36

© Siemens plc 1999

5. OPERATING MODES English

5.3.1 Linear Voltage to Frequency (V/f) (P077 = 0 or 2)

This mode is used for synchronous motors or motors connected in parallel. Each motor should be installed with a thermal overload relay if two or more motors are driven simultaneously by the inverter.

In many cases, when default factory parameters are used, the default stator resistance set in P089 will generally suit the default power rating set in P085. Should the inverter and motor ratings differ, an automatic

Stator Resistance calibration should be performed by setting P088 =1. Continuous Boost (P078) and Starting

Boost (P079) are dependent on the value of Stator Resistance — too high a value may cause overcurrent trips or motor overheating.

5.3.2 Flux Current Control (FCC) Operation (P077 = 1)

Flux Current Control operates by monitoring and maintaining the motor flux current continuously. This ensures that the best performance and efficiency are obtained. FCC is not as complex as SVC, and therefore is easier to set up and operate.

Note: This mode can result in reduced power consumption.

5.3.3 Sensorless Vector Control (SVC) Operation (P077 = 3)

When SVC operating mode is selected (P077=3), the inverter uses an internal mathematical model of the motor, together with accurate current sensing, to calculate the position and speed of the rotor. It is therefore able to optimise the applied voltage and frequency to the motor to give improved performance.

Output to Motor

Error

P, I,

Processor

(P386, P387)

Setpoint

Input

Internal Motor

Model

Motor Model Speed, Position and Torque feedback

Figure 5.3.3 : MICROMASTER Vector sensorless Vector operation

Although there is no position or speed feedback from the motor, the control system is a closed loop system because it compares the internal motor model performance with the desired performance. The system must therefore be carefully set up and stabilised for best performance.

Setting up SVC Operation

1. Set the correct Motor parameter settings in Parameters P080 to P085.

2. Select Sensorless Vector Operating mode P077 = 3

3. Ensure that the motor is cold and apply a run command. The display will show CAL to indicate that it is measuring the motor stator resistance. After a few seconds the motor will run. Calibration only occurs the first time that a run command is given following P077 being set to 3. It can be forced by changing P077 from SVC operation and back again, or by selecting P088 =1 (Stator Resistance Calibration). Interrupting the calibration process by disconnecting the power or removing the run command may give erroneous

© Siemens plc 1999

37

G85139-H1751-U529-D1

4/8/99

English 5. OPERATING MODES

4.

results and calibration should be repeated. If motor parameters are changed recalibration is also recommended.

Like any control system, SVC must be stabilised by setting the Gain (P386) and Integral (P387) terms.

Actual values and setting up is determined by testing, but the following procedure is suggested:

Whilst the inverter is operating under typical conditions, increase the value of P386, the loop gain, until the first signs of speed instability occur. The setting should then be reduced slightly

(approx. 10%) until stability is restored. As a guide, the optimum setting required will be proportional to the load inertia.

For example: P386 = Load inertia + motor shaft inertia

motor shaft inertia

P387, the integral term, may now be adjusted. Again, whilst operating the inverter under typical conditions, increment this parameter until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 30%) until stability is restored.

If fault code F016 occurs, this indicates that SVC is unstable and further adjustment or recalibration is needed.

F001, DC link overvoltage can also be caused by instability in SVC operating mode.

For further information concerning SVC operation refer to Application Note “Sensorless Vector Control”, which may be obtained from http://www.con.siemens.co.uk or a Siemens Sales Office.

Note: This mode gives the best flux control and higher torque.

5.4 Stopping the Motor

Stopping can be achieved in several ways:

Cancelling the ON command on the terminals or pressing the OFF button (O) on the front panel causes the inverter to Ramp-down at the selected Ramp-down rate (see P003).

OFF2 — operation causes the motor to coast to a standstill (parameters P051 to P055 or P356 set to 4).

OFF3 — operation causes rapid braking (parameters P051 to P055 or P356 set to 5).

DC injection braking up to 250% produces more effective braking to provide a quicker stop after cancellation of the ON command (see P073).

Resistive braking for MMV (see parameter P075).

Compound braking (see P066)

5.5 If the Motor Does Not Start Up

If the display shows a fault code, refer to section 7.

If the motor does not start up when the ON command has been given, check that the ON command is valid, check if a frequency setpoint has been entered in P005 and check that the motor specifications have been entered correctly under parameters P080 to P085.

If the inverter is configured for operation via the front panel (P007 = 001) and the motor does not start when the

RUN button is pressed, check that P121 = 001 (RUN button enabled).

If the motor does not run after parameters have been changed accidentally, reset the inverter to the factory default parameter values by setting parameter P944 to 1 and then pressing P.

5.6 Local and Remote Control

The inverter can be controlled either locally (default), or remotely via a USS data line connected to the internal interface terminals (24 and 25) or to the RS485 D-type connector on the front panel. (Refer to parameter P910 in section 6 for the available remote control options.)

When local control is used, the inverter can only be controlled via the front panel or the control terminals.

Control commands, setpoints or parameter changes received via the RS485 interface have no effect.

G85139-H1751-U529-D1

4/8/99 38

© Siemens plc 1999

5. OPERATING MODES English

For remote control, the serial interface is designed as a 2-wire connection for bi-directional data transmission.

Refer to parameter P910 in section 6 for the available remote control options.

Note: Only one RS485 connection is allowed. Use either the front panel D-type interface [e.g. to connect an

Clear Text Display(OPM2)] or terminals 24 and 25, but not both.

When operating via remote control the inverter will not accept control commands from the terminals. Exception:

OFF2 or OFF3 can be activated via parameters P051 to P055 and P356 (see section 6).

Several inverters can be connected to an external control unit at the same time. The inverters can be addressed individually.

Note: If the inverter has been set up to operate via the serial link but does not run when an ON command is received, try reversing the connections to terminals 24 and 25 .

For further information, refer to the following documents:

E20125-B0001-S302-A1

E20125-B0001-S302-A1-7600

Application of the USS Protocol in SIMOVERT Units 6SE21 and

MICROMASTER (German)

Application of the USS Protocol in SIMOVERT Units 6SE21 and

MICROMASTER (English)

5.7 Closed Loop Control

5.7.1 General Description

The MICROMASTER provides a PID control function for closed loop control (see Figure 5.7.1). PID control is ideal for temperature or pressure control, or other applications where the controlled variable changes slowly or where transient errors are not critical. This control loop is not suitable for use in systems where fast response times are required. When closed loop process control is enabled (P201 = 001), all setpoints are calibrated between zero and 100%, i.e. a setpoint of 50.0 = 50%.

Set point input

Integral capture

P207

Proportional

Gain

P202

Integral

Gain

P203

Differential

Gain

P204

Ramp rates,

P002, P003

Motor

Closed Loop

Control on/off

P201

Transducer

Type

P208

Scaling

P211

P212

MICROMASTER

Sample

Interval

P205

Filter

/Integrator

P206

MICROMASTER Closed loop PID control — Block Diagram

Figure : 5.7.1 – MICROMASTER / MIDIMASTER VECTOR Closed loop PID control

Process

© Siemens plc 1999

39

G85139-H1751-U529-D1

4/8/99

English 5. OPERATING MODES

5.7.2 Hardware Set-up

Make sure that the DIP selector switches 4 and 5 are correctly set (see Figure 4.1.2) and in agreement with

P323 for unipolar voltage or current feedback signal inputs. Connect the external feedback transducer between control terminals 10 and 11 (analogue input 2). This analogue input accepts a 0/2 — 10 V or a 0/4 — 20 mA input signal (determined by the setting of the DIP selector switches 4 and 5 and P323), has 10-bit resolution and permits a differential (floating) input. 15 V dc power for the feedback transducer can be supplied from terminal 9 on the control block.

5.7.3 Parameter Settings

Closed loop process control cannot be used unless P201 is first set to 001. Most of the parameters associated with closed loop process control are shown in Figure 5.7.1. Other parameters which are also associated with closed loop process control are as follows:

P010 (only if P001 = 1, 4, 5, 7 or 9)

P061 (value = 012 or 013)

P220

Descriptions of all closed loop process control parameters are provided in section 6. For detailed information about PID operation, refer to the application note “Closed Loop Control”, which may be obtained from

http://www.con.siemens.co.uk or a Siemens sales office.

G85139-H1751-U529-D1

4/8/99 40

© Siemens plc 1999

6. SYSTEM PARAMETERS English

6. SYSTEM PARAMETERS

Parameters can be changed and set using the keypad on the front panel (see Figure 4.1.1) to adjust the desired properties of the inverter, such as ramp times, minimum and maximum frequencies, etc. The parameter numbers selected and the setting of the parameter values are indicated on the four digit LED display.

Note: If the

or

button is pressed momentarily, the values change step by step. If the button is pressed for a longer time, the values scroll through rapidly.

Access to parameters is determined by the value set in P009. Make sure that the key parameters necessary for the application have been programmed.

Note: In the following parameter table:

’ Indicates parameters that can be changed during operation.

‘¶¶¶’ Indicates that the value of this factory setting depends on the rating of the inverter.

Increased Parameter Resolution

To increase the resolution to 0.01 when changing frequency parameters, instead of pressing P momentarily to return to the parameter display, keep the button pressed until the display changes to ‘- -.n0’ (n = the current tenths value, e.g. if the parameter value = ‘055.8’ then n = 8). Press

or

to change the value (all values between .00 and .99 are valid) and then press P twice to return to the parameter display.

Resetting to Factory Defaults

If parameters are changed accidentally, all parameters can be reset to their default values by setting parameter

P944 to 1 and then pressing P.

© Siemens plc 1999

41

G85139-H1751-U529-D1

4/8/99

English

Parameter Function Range

[Default]

Description / Notes

6. SYSTEM PARAMETERS

P000

P001

Operating display

Display mode

0 — 9

[0]

0 — 650.0

[10.0]

[10.0]

This displays the output selected in P001.

In the event of a failure, the relevant fault code (Fnnn) is displayed

(see section 7) or the display flashes in the event of a warning (see

P931) or If output frequency has been selected (P001 = 0) and the inverter is in stand-by mode, the display alternates between the setpoint frequency and the actual output frequency which is zero Hz.

Display selection:

0 = Output frequency (Hz)

1 = Frequency setpoint (i.e. speed at which inverter is set to run)

(Hz)

2 = Motor current (A)

3 = DC-link voltage (V)

4 = Motor torque (% nominal)

5 = Motor speed (rpm)

6 = USS serial bus status (see section 9.2)

7 = PID Feedback signal (%)

8 = Output voltage (V)

9 = Instantaneous rotor / shaft frequency (Hz).Note: Applicable only for Sensorless Vector control mode.

Notes: 1. The display can be scaled via P010.

2. When the inverter is operating in Sensorless Vector

Control mode (P077 = 3) the display shows actual rotor /

shaft speed in Hz. When the inverter is operating in V/f or

FCC modes (P077 = 0, 1 or 2) the display shows inverter output frequency in Hz.

WARNING: In Sensorless Vector Control mode (P077

= 3) the display shows 50Hz when a 4-pole motor is rotating at 1500rpm which may be slightly higher than the nominal speed shown on the motor rating plate.

This is the time taken for the motor to accelerate from standstill to the maximum frequency as set in P013. Setting the Ramp-up time too short can cause the inverter to trip (fault code F002 — overcurrent).

Frequency f max

P002

Ramp-up time (seconds)

MMV

MDV550/2, 750/2, 750/3, 1100/3,

220/4, 400/4, 550/4, 750/4,

1100/4.

MDV1100/2, 1500/2, 1850/2,

2200/2, 1500/3, 1850/3, 2200/3,

3000/3, 3700/3, 1500/4, 1850/4,

2200/4, 3000/4, 3700/4.

MDV3000/2, 3700/2, 4500/2,

4500/3, 5500/3, 7500/3.

P003

Ramp-down time (seconds)

MMV

MDV550/2, 750/2, 750/3, 1100/3,

220/4, 400/4, 550/4, 750/4,

1100/4.

MDV1100/2, 1500/2, 1850/2,

2200/2, 1500/3, 1850/3, 2200/3,

3000/3, 3700/3, 1500/4, 1850/4,

2200/4, 3000/4, 3700/4.

MDV3000/2, 3700/2, 4500/2,

4500/3, 5500/3, 7500/3.

G85139-H1751-U529-D1

4/8/99

[20.0]

[40.0]

0 — 650.00

[10.0]

[10.0]

0 Hz

Ramp up time

(0 — 650 s)

Time

This is the time taken for the motor to decelerate from maximum frequency (P013) to standstill, Setting the Ramp-down time too short can cause the inverter to trip (fault code F001 -DC Link overvoltage).

This is also the period for which DC injection braking is applied when P073 is selected.

Frequency f max

[20.0]

[40.0]

0 Hz

Ramp down time

(0 — 650 s)

Time

© Siemens plc 1999

42

6. SYSTEM PARAMETERS

Parameter Function

P004

Smoothing Time (seconds)

English

Range

[Default]

Description / Notes

0 — 40.0

[0.0]

Used to smooth the acceleration/deceleration of the motor (useful in applications where it is important to avoid ‘jerking’, e.g. conveyor systems, textiles, etc.).

Smoothing is only effective if the Ramp-up and/or down time exceeds

0.3 s.

Frequency

P002 = 10 s f max

(P013)

P005

Digital frequency setpoint (Hz) 0 — 650.00

[5.00]

P006

Frequency setpoint source selection

0 — 3

[0]

P007

P009

Keypad control

Parameter protection setting

0 — 1

[1]

0 — 3

[0]

0 Hz

P004

= 5 s

P004

= 5 s

Time

Total acceleration time

= 15 s

Note: The smoothing curve for deceleration is also affected by the

Ramp-up gradient (P002). Therefore, the Ramp-down time is also affected by changes to P002.

Sets the frequency that the inverter will run at when operated in digital mode. Only effective if P006 = 0 or 3.

Selects the mode of control of the frequency setpoint for the inverter.

0 = Digital motorised potentiometer. The inverter runs at the frequency set in P005 and can be controlled with the

and

∇ pushbuttons (motorised potentiometer). Alternatively, if P007 is set to zero, the frequency may be increased or decreased by setting any two of the digital inputs (P051 to P055 or P356) to values of 11 and 12.

1 = Analogue. Control via analogue input signal.

2 = Fixed frequency. Fixed frequency is only selected if the value of at least one of the digital inputs (P051 to P055 or

P356) = 6 17 or 18.

3 = Digital setpoint addition. Requested frequency = digital frequency (P005) + fixed frequencies (P041 to P044, P046 to P049) as selected.

Notes: (1) If P006 = 1 and the inverter is set up for operation via the serial link, the analogue inputs remain active.

(2) Motorised potentiometer setpoints via digital inputs are stored upon power-down when P011 = 1.

0 = RUN, JOG and REVERSE are disabled. Control is via digital inputs (see parameters P051 — P055 and P356).

and

may still be used to control frequency provided that P124 = 1 and a digital input has not been selected to perform this function.

1 = Front panel buttons can be selectively enabled or disabled depending on the setting of parameters P121 — P124.

Note: The digital inputs for RUN, JOG and increase/decrease frequency are disabled.

Determines which parameters can be adjusted:

0 = Only parameters from P001 to P009 can be read/set.

1 = Parameters from P001 to P009 can be set and all other parameters can only be read.

2 = All parameters can be read/set but P009 automatically resets to 0 when power is removed.

3 = All parameters can be read/set.

© Siemens plc 1999

43

G85139-H1751-U529-D1

4/8/99

English

Parameter Function Range

[Default]

Description / Notes

6. SYSTEM PARAMETERS

P010

P011

Display scaling

Frequency setpoint memory

0 — 500.0

[1.00]

0 — 1

[0]

Scale factor for display when P001 = 0, 1, 4, 5, 7 or 9.

Four digit resolution.

0 = Disabled

1 = Enabled after switch-off. i.e. the setpoint alterations made with the

/

buttons are stored even when power has been removed from the inverter.

Sets the minimum motor frequency (must be less than the value of

P013).

P012

Minimum motor frequency (Hz) 0 — 650.00

[0.00]

P013

Maximum motor frequency (Hz) 0.01-650.00

[50.00]

P014

P015

Skip frequency 1 (Hz)

Automatic restart after mains failure.

0 — 650.00

[0.00]

0 — 1

[0]

Sets the maximum motor frequency.

CAUTION: To maintain stable operation when in sensorless vector control mode (P077=3), the maximum motor frequency (P013), should not exceed 3x nominal rating plate motor frequency (P081).

A skip frequency can be set with this parameter to avoid the effects of resonance of the inverter. Frequencies within +/- (the value of P019) of this setting are suppressed. Stationary operation is not possible within this suppressed frequency range — the range is just passed through. Setting P014=0 disables this function.

Setting this parameter to ‘1’ enables the inverter to restart automatically after a mains break or ‘brownout’, provided the external run/stop switch, connected to a digital input, is still closed, P007 = 0 and P910 = 0, 2 or 4.

0 = Disabled

1 = Automatic restart

P016

Start on the fly 0 — 4

[0]

Allows the inverter to start onto a spinning motor.

Under normal circumstances the inverter runs the motor up from 0 Hz.

However, if the motor is still spinning or is being driven by the load, it will undergo braking before running back up to the setpoint — this can cause an overcurrent trip. By using a flying restart, the inverter ‘homes in’ on the motor’s speed and runs it up from that speed to the setpoint. (Note: If the motor has stopped or is rotating slowly, some ‘rocking’ may occur as the inverter senses the direction of rotation prior to restarting.)

0 = Normal restart

1 = Flying restart after power up, fault or OFF2 ( if P018 = 1).

2 = Flying restart every time (useful in circumstances where the motor can be driven by the load).

3 = As P016 = 1 except that the inverter will only attempt to restart the motor in the direction of the requested setpoint.

The motor is prevented from ‘rocking’ backwards and forwards during the initial frequency scan.

4 = As P016 = 2 except that the inverter will only attempt to restart the motor in the direction of the requested setpoint.

The motor is prevented from ‘rocking’ backwards and forwards during the initial frequency scan.

Note:

For MIDIMASTER Vector units, it is recommended that if

P016 > 0 then P018 should be set to ‘1’. This will ensure correct re-starting if the inverter fails to re-synchronise on the initial attempt.

IMPORTANT:

When P016 > 0, care must be taken to set up the motor nameplate data (parameters P080 toP085) and to perform an auto stator resistance calibration (P088=1) on a cold motor. Recommended maximum operating frequency should be less than 120 Hz.

G85139-H1751-U529-D1

4/8/99 44

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function Range

[Default]

Description / Notes

English

P017

P018

P022

Smoothing type

Automatic restart after fault

Maximum analogue frequency

(Hz)

1 — 2

[1]

0 — 1

[0]

P019

Skip frequency bandwidth (Hz) 0.00 — 10.00

[2.00]

P021

Minimum analogue frequency

(Hz)

0 — 650.00

[0.00]

0 — 650.00

[50.00]

1 = Continuous smoothing (as defined by P004).

2 = Discontinuous smoothing. This provides a fast unsmoothed response to STOP commands and requests to reduce frequency.

Note:

P004 must be set to a value > 0.0 for this parameter to have any effect.

Automatic restart after fault:

0 = Disabled

1 = The inverter will attempt to restart up to 5 times after a fault.

If the fault is not cleared after the 5th attempt, the inverter will remain in the fault state. The display flashes during this condition.

WARNING:

While waiting to re-start, the display will flash. This means that a start is pending and may happen at any time. Fault codes can be observed in P140 and P930.

Frequencies set by P014, P027, P028 and P029 that are within +/the value of P019 of all skip frequencies are suppressed.

Frequency corresponding to the lowest analogue input value, i.e.

0 V/0 mA or 2 V/4 mA, determined by P023 and the settings of the

DIP selector switches 1, 2 and 3 (see Figure 4.1.2). This can be set to a higher value than P022 to give an inverse relationship between analogue input and frequency output (see diagram in P022).

Frequency corresponding to the highest analogue input value, i.e.

10 V or 20 mA, determined by P023 and the setting of the DIP selector switches 1, 2 and 3 (see Figure 4.1.2) This can be set to a lower value than P021 to give an inverse relationship between analogue input and frequency output.

i.e.

f

P021

P022

P022

P021

V/ I

Note: The output frequency is limited by values entered for

P012/P013.

© Siemens plc 1999

45

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P023

Analogue input 1 type

P024

Analogue setpoint addition

P025

Analogue output 1

G85139-H1751-U529-D1

4/8/99

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 3

[0]

Sets analogue input type for analogue input 1, in conjunction with the settings of the DIP selector switches 1, 2 and 3 (see Figure 4.1.2). :

0 = 0 V to 10 V/ 0 to 20 mA Unipolar input

1 = 2 V to 10 V/ 4 to 20 mA Unipolar input

2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start / stop when using analogue input control.

3 = -10V to +10V Bipolar input. -10V corresponds to left rotation at speed set in P021, +10V corresponds to right rotation at speed set in P022

Note:

Setting P023 = 2 will not work unless the inverter is under full local control (i.e. P910 = 0 or 4) and V

1 V or 2mA.

WARNING: The inverter will automatically start when voltage goes above 1V. This equally applies to both analogue and digital control (i.e. P006 = 0 or 1)

Bi-polar Input Operation

F max

P022

-10V

0.2V Hysteresis

+10V

0 — 2

[0]

0 — 105

[0]

P021

F min

If the inverter is not in analogue mode (P006 = 0 or 2), setting this parameter to:

0 = No addition to basic setpoint frequency as defined in P006.

1 = Addition of analogue input 1 to the basic setpoint frequency as defined in P006

2 = Scaling of basic setpoint (P006) by analogue input 1 in the range 0 -100%.

This provides a method of scaling the analogue output 1 in accordance with the following table:

Use range 0 — 5 if minimum output value = 0 mA.

Use range 100 — 105 if minimum output value = 4 mA

P025 = Selection Analogue Output Range Limits

0/4 mA

0 Hz

20 mA

Output frequency (P013)

0/100

Output frequency

1/101

Frequency setpoint

2/102

Motor current

0 Hz

0 A

Frequency setpoint (P013)

3/103

4/104

5/105

DC-link voltage

Motor torque

Motor RPM

0 V

-250%

0

Max. overload current

(P083 x P086 / 100)

1023 Vdc

+250%

(100% = P085 x 9.55 / P082

Nm)

Nominal motor RPM

(P082)

© Siemens plc 1999

46

6. SYSTEM PARAMETERS

Parameter Function Range

[Default]

Description / Notes

English

6/106

Motor magnetising current

7/107

Motor torque producing current

(centre zero)

0 A

0 A

Max regenerative torque

Max. overload current

(P083 x P186 / 100)

Max. overload current i.e. accelerating torque

(P083 x P186 / 100)

P026

Analogue output 2 (MDV only) 0 — 105

[0]

P027

Skip frequency 2 (Hz) 0 — 650.00

[0.00]

P028

Skip frequency 3 (Hz) 0 — 650.00

[0.00]

P029

Skip frequency 4 (Hz) 0 — 650.00

[0.00]

P031

Jog frequency right (Hz) 0 — 650.00

[5.00]

This provides a method of scaling the analogue output 2 in accordance with the table shown in P025.

See P014.

See P014.

See P014.

P032

P033

P034

Jog frequency left (Hz)

Jog Ramp-up time (seconds)

Jog Ramp-down time (seconds)

0 — 650.00

[5.00]

0 — 650.0

[10.0]

0 — 650.0

[10.0]

Jogging is used to advance the motor by small amounts. It is controlled via the JOG button or with a non-latching switch on one of the digital inputs (P051 to P055 and P356).

If jog right is enabled for one if these digital inputs (e.g. P051-55 or P356 =7) or if the Job Button is pressed this parameter controls the frequency at which the inverter will run when the switch is closed. Unlike other setpoints, it can be set lower than the minimum frequency.

If jog left is enabled (e.g. P051-55 or P356 = 8), this parameter controls the frequency at which the inverter will run when the switch is closed. Unlike other setpoints, it can be set lower than the minimum frequency.

This is the time taken to accelerate from 0 Hz to maximum frequency (P013) for jog functions. It is not the time taken to accelerate from 0 Hz to the jog frequency.

If one of the digital inputs is programmed to select jog ramp times, the corresponding digital input can be used to select the ramp time set by this parameter instead of the normal Ramp-up time set by P002.

This is the time taken to decelerate from maximum frequency (P013) to 0 Hz for jog functions. It is not the time taken to decelerate from the jog frequency to 0 Hz.

If one of the digital inputs is programmed to select jog ramp times, the corresponding digital input can be used to select the ramp time set by this parameter, instead of the normal Ramp-down time set by

P003.

© Siemens plc 1999

47

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P040

Positioning function

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 1

[0]

0 — Disabled

1 — Under normal operation the ramp-down time is defined as the time taken to ramp-down from the value set in P013 to 0. Setting P040 to

1 will automatically re-scale the ramp down time so that the motor will always stop in the same position regardless of operating frequency.

P013 f

Stop Command

P041

Fixed frequency 1 (Hz)

P042

Fixed frequency 2 (Hz)

P043

Fixed frequency 3 (Hz)

P044

Fixed frequency 4 (Hz)

0

0

Stop position t

e.g. P003 = 1s, P013 = 50Hz, P012 = 0Hz.

If the motor is running at 50Hz and a stop command applied, the motor will stop in 1second. If the motor is running at 25Hz, the motor will stop in 2 seconds and if the motor is running at 5Hz, the motor will stop in 10 seconds. In each case, the motor will stop at the same position.

0 — 650.00

[5.00]

0 — 650.00

[10.00]

0 — 650.00

[15.00]

0 — 650.00

[20.00]

Valid if P006 = 2 and P055 = 6 or 18, or P053-55=17

Valid if P006 = 2 and P054 = 6 or 18, or P053-55=17

Valid if P006 = 2 and P053 = 6 or 18, or P053-55=17

Valid if P006 = 2 and P052 = 6 or 18 , or P053-55=17

G85139-H1751-U529-D1

4/8/99 48

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function

P045

Inversion fixed setpoints for fixed frequencies 1 — 4

P046

Fixed frequency 5 (Hz)

P047

Fixed frequency 6 (Hz)

P048

Fixed frequency 7 (Hz)

P049

Fixed frequency 8 (Hz)

P050

Inversion fixed setpoints for fixed frequencies 5 — 8

Range

[Default]

Description / Notes

0 — 7

[0]

Sets the direction of rotation for the fixed frequency:

0 — 650.00

[25.0]

0 — 650.00

[30.0]

0 — 650.00

[35.0]

0 — 650.00

[40.0]

0 — 7

[0]

P045 = 0

P045 = 1

P045 = 2

P045 = 3

P045 = 4

P045 = 5

FF 1 FF 2

FF3

P045 = 6

P045 = 7

Fixed setpoints not inverted.

Fixed setpoints inverted.

Valid if P006 = 2 and P051 = 6 or 18. , or P053-55=17

FF 4

Valid if P006 = 2 and P356 = 6 or 18, or P053-55=17

Valid if P006 = 2, and P053-55=17

Valid if P006 = 2, and P053-55=17

Sets the direction of rotation for the fixed frequency:

P050 = 0

P050 = 1

P050 = 2

P050 = 3

P050 = 4

P050 = 5

P050 = 6

P050 = 7

FF 5 FF 6

FF7

Fixed setpoints not inverted

Fixed setpoints inverted

FF8

English

© Siemens plc 1999

49

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P051

Selection control function, DIN1

(terminal 5), fixed frequency 5.

P052

Selection control function, DIN2

(terminal 6), fixed frequency 4.

0 — 24

[1]

0 — 24

[2]

P053

Selection control function, DIN3

(terminal 7), fixed frequency 3.

If set to 17, this enables the most significant bit of the 3-bit Binary code

(see table).

0 — 24

[6]

P054

Selection control function, DIN4

(terminal 8 ), fixed frequency 2 .

If set to 17, this enables the middle bit of the 3-bit Binary code (see table).

0 — 24

[6]

P055

Selection control function, DIN5

(terminal 16 ), fixed frequency 1.

If set to 17, this enables the least significant bit of the 3-bit Binary code

(see table).

0 — 24

[6]

P356

Selection control function, DIN6

(terminal 17 ), fixed frequency 6.

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 24

[6]

Value Function of P051 to P055 and

P356

Function, low state

Function, high state

6

7

8

9

4

5

0

1

2

3

10

Input disabled

ON right

ON left

Reverse

OFF2(see section 5.4)

OFF3(see section 5.4)

Fixed frequencies 1 — 6

Jog right

Jog left

USS operation

Fault reset

(P910 =1 or 3)

Off

Off

Normal

OFF2

OFF3

Off

Off

Off

Local

Off

11

12

13

14

15

16

17

18

19

20

22

23

Increase frequency *

Decrease frequency *

Disable analogue input (setpoint is 0.0Hz)

Disable the ability to change parameters

Enable dc brake

Use jog ramp times instead of normal ramp times

Binary fixed frequency control

(fixed frequencies 1 — 8) **

Fixed frequencies 1-6, but input high will also request RUN when

P007 = 0.

External trip

Watchdog trip (see P057),

(minimum pulse width = 20 ms)

Note: The first Low-to-High transition initiates the Watchdog timer.

Download parameter set 0 from

OPM2***

Download parameter set 1 from

OPM2***

Off

Off

Analogue on

‘P’ enabled

Off

Normal

Off

Off

Yes (F012)

Off

Off

Brake on

Jog ramp times

On

On

No

Low to High transition resets

Watchdog timer

Download

Download

24

Switch analogue setpoint

Analogue input 1 active.

Analogue **** input 2 active.

* Only effective when P007 = 0.

** Not available on P051, P052 or P356.

*** The motor must be stopped before downloading begins.

Downloading takes approx. 30 seconds.

**** Top left hand segment in display flashes

On right

On left

Reverse

On

On

On

Jog right

Jog left

(USS, Profiand CANbus)

Reset on rising edge

Increase

Decrease

Analogue disabled

‘P’ disabled

G85139-H1751-U529-D1

4/8/99 50

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function

P056

Digital input debounce time

P057

Digital Input Watchdog Trip

(seconds)

English

Range

[Default]

Description / Notes

0 — 2

[0]

0.0-650.0

[1.0]

FF5 (P046)

FF6 (P047)

FF7 (P048)

FF8 (P049)

FF1 (P041)

FF2 (P042)

FF3 (P043)

FF4 (P044)

Binary Coded Fixed Frequency Mapping

DIN3 (P053)

0

0

1

1

0

0

1

1

DIN4 (P054)

0

0

1

1

0

0

1

1

DIN5 (P055)

0

1

0

1

0

1

0

1

Note: If P051 or P052 = 6 or 18 while P053 or P054 or P055 = 17 then the setpoints are added.

Examples: (1) P053 = 17, P054 = 17, P055 = 17:

All 8 fixed frequencies are available e.g. DIN3 = 1, DIN4 = 1, DIN5 = 0

FF3 (P043)

(2) P053

17, P054 = 17, P055 = 17:

DIN3 is fixed at zero (only FF5 to FF8 available) e.g. DIN4 = 1, DIN5 = 0

FF7 (P048)

0 = 12.5 ms

1 = 7.5 ms

2 = 2.5 ms

Time interval between expected ‘Watchdog kicks’ or if this time interval should lapse without a pulse on one of the digital inputs, an F057 trip will occur.

(See P051 to P055 and P356)

© Siemens plc 1999

51

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P061

Selection relay output RL1

P062

Selection relay output RL2.

P063

External brake release delay

(seconds)

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 13

[6]

0 — 13

[8]

0 — 20.0

[1.0]

Sets the relay function, output RL1 (terminals 18,19 and 20)

Value Relay function Active

3

2

3

4

5

0

1

No function assigned (relay not active)

Inverter is running

Inverter frequency 0.0 Hz

Motor running direction right

Low

High

Low

High

8

9

6

7

External brake on (see parameters P063/P064) Low

Inverter frequency greater than minimum frequency High

Fault indication

1

Low

Inverter frequency greater than or equal to setpoint High

Warning active

2

Output current greater than or equal to P065

10

Motor current limit (warning)

2

11

Motor over temperature (warning)

2

12

PID closed loop motor LOW speed limit

Low

High

Low

Low

High

13

PID closed loop motor HIGH speed limit High

1

Inverter switches off (see parameter P930 and P140 to P143 and

section 7).

2

3

Inverter does not trip(see parameter P931).

‘Active low’ = relay OFF/ de-energised or ‘Active high’ = relay ON/ energised

Note:

If the external brake function is used (P061 or P062 = 4) and additional slip compensation is used (P071

0), minimum frequency must be less than 5 Hz (P012 < 5.00), otherwise the inverter may not switch off.

Warning:Relay operation is not defined during parameter changes and may change unpredictably.

Ensure any equipment connected to the relays will remain safe if the relays change state during parameterisation.

Sets the relay function, output RL2 (terminals 21and 22) (refer to the

table in P061).

Only effective if the relay output is set to control an external brake

(P061 or P062 = 4). In this case when the inverter is switched on, it will run at the minimum frequency for the time set by this parameter before releasing the brake control relay and ramping up (see illustration in

P064).

G85139-H1751-U529-D1

4/8/99 52

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function

P064

External brake stopping time

(seconds)

English

Range

[Default]

Description / Notes

0 — 20.0

[1.0]

As P063, only effective if the relay output is set to control an external brake. This defines the period for which the inverter continues to run at the minimum frequency after ramping down and while the external brake is applied.

f ON OFF f min t

P063

A

B t t

P064

A

A = Brake applied

B = Brake removed

P065

Current threshold for relay (A) 0.0-300.0

[1.0]

P066

P069

P070

Compound braking

Ramp extension disable

Braking Resistor Duty Cycle

(MMV only)

0 — 250

[0]

0 — 1

[1]

0 — 4

[0]

Notes: (1) Settings for P063 and P064 should be slightly longer than the actual time taken for the external brake to apply and release respectively

(2) Setting P063 or P064 to too high a value, especially with P012 set to a high value, can cause an overcurrent warning or trip as the inverter attempts to turn a locked motor shaft.

This parameter is used when P061 or P062 = 9. The relay switches on when the motor current is greater than the value of P065 and switches off when the current falls to 90% of the value of P065 (hysteresis).

0 = Off

1 to 250 = Defines the level of DC superimposed on the AC waveform, expressed as a percentage of P083. Generally, increasing this value improves braking performance, however, with 400V inverters, a high value in this parameter could cause F001 trips.

Note: Compound braking does not operate in Sensorless Vector control mode (P077=3).

0 — Ramp extension disabled.

1 — Ramp extension enabled. Ramp time is increased during current limit, overvoltage limit and slip limit to prevent tripping.

Note: Ramp extension does not occur when in vector control (P077=3).

0 = 5%

1 = 10%

2 = 20%

3 = 50%

4 = 100% (i.e. continuous)

WARNING: Standard braking resistors for the MICROMASTER

Vector are designed for the 5% duty cycle only. Do not select higher duty cycles unless suitably rated resistors are being used to handle the increased power dissipation. The maixmum on time for values 0 to 3 is limited according to the brake resistor thermal capacity. Limit is 12 seconds for

5%, increasing to 25 seconds for 50%.

© Siemens plc 1999

53

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P071

Slip compensation (%)

P072

Slip limit (%)

P073

DC injection braking (%)

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 200

[0]

0 — 500

[250]

0 — 200

[0]

The inverter can estimate the amount of slip in an asynchronous motor at varying loads and increase its output frequency to compensate. This parameter ‘fine tunes’ the compensation for different motors in the range 0 — 200% of the calculated slip.

Note: This feature is not active and is not necessary when in

Sensorless Vector Control (P077=3).

WARNING: This parameter must be set to zero when using synchronous motors or motors that are connected in parallel or over-compensation can cause instability.

0 — 499 — This limits the slip of the motor to prevent ‘pull-out’ (stalling), which can occur if slip is allowed to increase indefinitely.

When the slip limit is reached, the inverter reduces frequency to keep the level of slip below this limit.

500 — Disables slip limit warning

This rapidly stops the motor by applying a DC braking current and holds the shaft stationary until the end of the braking period. Additional heat is generated within the motor. Braking is effective for the period of time set by P003.

The DC brake can be activated using DIN1 to DIN6 (see P051 to P055

and P356).

WARNING: Frequent use of long periods of dc injection braking can cause the motor to overheat.

If DC injection braking is enabled via a digital input then DC current is applied for as long as the digital input is high. This causes heating of the motor.

G85139-H1751-U529-D1

4/8/99 54

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function

P074

I

2 t motor protection

English

Range

[Default]

Description / Notes

0 — 7

[1]

Selects the most appropriate curve for the motor derating at low frequencies due to the reduced cooling effect of the shaft mounted cooling fan.

P074 = 0/4 P074 = 1/5 P074 = 3/7 P074 = 2/6

100% I

N

50% I

N

P075

Braking chopper enable

(MMV only)

0 — 1

[0]

50% F

N

100% F

N

150% F

N

I

N

= Nominal motor current (P083)

F

N

= Nominal motor frequency (P081)

0 = No derating. Suitable for motors with separately powered cooling or no fan cooling which dissipate the same amount of heat regardless of speed.

1 = For 2 or 4-pole motors which generally have better cooling due to their higher speeds. The inverter assumes that the motor can dissipate full power at ò 50% nominal frequency.

2 = Suitable for special motors not continuously rated at nominal current at nominal frequency..

3 = For 6 or 8-pole motors. The inverter assumes that the motor can dissipate full power at ò nominal frequency.

4 = As P074 = 0 but the inverter trips (F074) instead of reducing the motor torque / speed.

5 = As P074 = 1 but the inverter trips (F074) instead of reducing the motor torque / speed.

6 = As P074 = 2 but the inverter trips (F074) instead of reducing the motor torque / speed.

7 = As P074 = 3 but the inverter trips (F074) instead of reducing the motor torque / speed.

Note:I

2 t motor protection is not recommended where the motor is less than half the power rating of the inverter.

0 = An external braking resistor is not connected.

1 = An external braking resistor is connected.

An external braking resistor can be used to ‘dump’ the power generated by the motor, thus giving greatly improved braking and deceleration capabilities. It MUST be greater than 40

(80

for 3 AC

400 V inverters) or the inverter will be damaged. Purpose made resistors are available to cater for all MICROMASTER Vector variants.

WARNING: Take care if an alternative resistor is to be used as the pulsed voltage applied by the inverter can destroy ordinary resistors.

© Siemens plc 1999

55

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P076

Pulse frequency

G85139-H1751-U529-D1

4/8/99

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 7

[0 or 4]

Sets the pulse frequency (from 2 to 16 kHz) and the PWM mode. If silent operation is not absolutely necessary, the losses in the inverter as well as the RFI emissions can be reduced by selecting lower pulse frequencies.

0/1 = 16 kHz (230 V default)

2/3 = 8 kHz

4/5 = 4 kHz (400 V default)

6/7 = 2 kHz

Even numbers = normal modulation technique.

Odd numbers = lower loss modulation technique used when operating mainly at speeds above 5 Hz.

Due to higher switching losses at increased switching frequencies, certain inverters may have their maximum continuous current (100%) derated if the value of P076 is changed from the default value

MDV550/2

MDV750/2

MDV1100/2

MDV1500/2

MDV1850/2

MDV2200/2

MDV750/3

MDV1100/3

MDV1500/3

MDV1850/3

MDV2200/3

MDV3000/3

MDV3700/3

MDV550/4

MDV750/4

MDV1100/4

MDV1500/4

MDV1850/4

Model

MMV75/3

MMV110/3

MMV150/3

MMV220/3*

MMV300/3*

MMV400/3*

MMV550/3*

MMV750/3*

% of full load de-rating

P076 =0 or 1 P076 =2 or 3

80

50

50

80

50

50

50

50

100

80

80

100

80

80

80

80

* Derating applies to filtered units MMVXXX/3F as well

Model % of full load de-rating

P076 =0 or 1 P076 =2 or 3

47

43

38

55

64

55

90

90

75

80

79

68

57

50

64

55

50

47

40

75

55

39

64

55

90

83

90

75

90

88

75

100

100

75

90

75

© Siemens plc 1999

56

6. SYSTEM PARAMETERS

Parameter Function

P077

Control mode

P078

Continuous boost (%)

P079

MMV

MDV (P077=3)

MDV (P077=0, 1 or 2)

Starting boost (%)

English

Range

[Default]

Description / Notes

0 — 3

(1)

0 — 250

[100]

[100]

[50]

0 — 250

[0]

Note: If P076 = 4, 5, 6 or 7 then derating does not occur on the above inverters.

Note:

On 230V units of 30kW and above, 400V units of 45kW and above, and 575V units of 22kW and above, P076 can only be set to 4, 5, 6 or 7 (4kHz or 2kHz only).

The switching frequency will automatically be reduced if the inverter internal protection detects an excessive heat sink temperature. The switching frequency will automatically be returned to the setting once this temperature returns to normal.

Controls the relationship between the speed of the motor and the voltage supplied by the inverter. One of four modes can be selected:

0 = V/f curve

1 = FCC control

2 = Quadratic V/f

3 = Vector Control

Note: When Sensorless Vector Control is selected (P077 = 3), P088 will automatically be set to 1, so that on first run-up, the inverter will measure the stator resistance of the motor and calculate motor constants from the rating plate data in P080 to P085.

For many applications it is necessary to increase low frequency torque.

This parameter sets the start-up current at 0 Hz to adjust the available torque for low frequency operation. 100% setting will produce rated motor current (P083) at low frequencies.

WARNING: If P078 is set too high, overheating of the motor and/or an overcurrent trip (F002) can occur.

For drives which require a high initial starting torque, it is possible to set an additional current (added to the setting in P078) during ramp duration (P002). This is only effective during initial start up and until the frequency setpoint is reached.

WARNING: This increase is in addition to P078, but the total is limited to 250%.

© Siemens plc 1999

57

G85139-H1751-U529-D1

4/8/99

English

Parameter Function Range

[Default]

Description / Notes

6. SYSTEM PARAMETERS

P080

P081

Nominal rating plate frequency for motor (Hz)

P082

Nominal rating plate speed for motor (RPM)

P083

Nominal rating plate motor power factor (cos ϕ

)

Nominal rating plate current for motor (A)

0.00-1.00

[¶¶¶]

If efficiency is shown on the motor rating plate, calculate the power factor as follows: pf = hp x 746

1.732 x efficiency x nom. volts x nom. amps

If neither power factor nor efficiency are shown on the motor rating plate — set P080 = 0.

0 — 650.00

[50.00]

0 — 9999

[¶¶¶]

0.1-300.0

[¶¶¶]

Notes:

1 These parameters P080 to P085 must be set for the particular motor used. Read the figures from the motor rating plate (

see Figure 4.2..1

).

2 It will be necessary to perform an automatic calibration

(P088 = 1)

if

P080 to P085 are changed from their factory default settings.

P084

Nominal rating plate voltage for motor (V)

P085

Nominal rating plate power for motor (kW)

P086

Motor current limit (%)

P087

P088

P089

P091

Motor PTC enable

Automatic calibration

Stator resistance (

)

Serial link slave address

0 — 1000

[¶¶¶]

0.12-250.00

[¶¶¶]

3 When the inverter is set-up for North American operation (P101=1);

P081 will default to 60Hz and P085 will indicate hp (0.16 — 250)

0 — 250

[150]

0 — 1

[0]

0 — 1

[0]

0.01-199.99

[¶¶¶]

0 — 30

[0]

Defines the motor overload current as a % of the Nominal motor current (P083) allowed for up to one minute.

With this parameter and P186, the motor current can be limited and overheating of the motor prevented. If the value set in P083 is exceeded for one minute, (or longer if the overload is small) , the output frequency is reduced until the current falls to that set in P083.

The inverter display flashes as a warning indication but the inverter does not trip. The inverter can be made to trip using P074.

Note: The maximum value that P086 can be set to is automatically limited by the rating of the inverter.

0 = Disabled

1 = External PTC enabled

Note:

If motor thermal protection is required, then an external PTC must be used and P087 = 1. If P087 = 1 and the PTC input goes high then the inverter will trip (fault code F004 displayed).

The motor stator resistance is used in the inverter’s internal current monitoring calculations. When P088 is set to ‘1’ and the RUN button is pressed, the inverter performs an automatic measurement of motor stator resistance; stores it in P089 and then resets P088 to ‘0’.

If the measured resistance is too high for the size of inverter (e.g.

motor not connected or unusually small motor connected), the inverter will trip (fault code F188) and will leave P088 set to ‘1’. If this happens, set P089 manually and then set P088 to ‘0’.

Can be used instead of P088 to set the motor stator resistance manually. The value entered should be the resistance measured across any two motor phases.

WARNING: The measurement should be made at the inverter terminals with power off and cold motor.

Note:

If the value of P089 is too high then an overcurrent trip(F002) may occur.

Up to 31 inverters can be connected via the serial link and controlled by a computer or PLC using the USS serial bus protocol. This parameter sets a unique address for the inverter.

G85139-H1751-U529-D1

4/8/99 58

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function Range

[Default]

Description / Notes

English

P092

P093

P094

P095

P099

P101

P111

Inverter power rating (kW/hp) 0.12- 75.00

[¶¶¶]

P112

P113

© Siemens plc 1999

Serial link baud rate

Serial line time-out (seconds)

Serial link nominal system setpoint (Hz)

USS compatibility

Option module type

Operation for Europe or North

America

Inverter type

Drive model

3 — 7

[6]

0 — 240.

[0]

0 — 650.00

[50.00]

0 — 2

[0]

0 — 2

[0]

0 — 1

[0]

1 — 8

[¶¶¶]

0 — 29

[¶¶¶]

Sets the baud rate of the RS485 serial interface (USS protocol):

3 = 1200 baud

4 = 2400 baud

5 = 4800 baud

6 = 9600 baud

7 = 19200 baud

Note:

Some RS232 to RS485 converters are not capable of baud rates higher than 4800.

This is the maximum permissible period between two incoming data telegrams. This feature is used to turn off the inverter in the event of a communications failure.

Timing starts after a valid data telegram has been received and if a further data telegram is not received within the specified time period, the inverter will trip and display fault code F008.

Setting the value to zero switches off the control.

Setpoints are transmitted to the inverter via the serial link as percentages. The value entered in this parameter represents 100%

(HSW = 4000H).

0 =

1 =

2 =

Compatible with 0.1 Hz resolution

Enable 0.01 Hz resolution

HSW is not scaled but represents the actual frequency value to a resolution of 0.01 Hz (e.g. 5000 = 50 Hz).

0 =

1 =

2 =

Option module not present

PROFIBUS module (enables parameters relating to

PROFIBUS)

CANbus module (enables parameters relating to CANbus)

This sets the inverter for European or North America supply and nominal rating plate frequency for the motor to:

0 = Europe (50 Hz and power ratings to kW)

1 = North America (60 Hz and power ratings to hp)

Note: After setting P101 =1 the inverter must be re-set to factory defaults, i.e. P944 = 1 to automatically set P013 = 60Hz, P081=

60Hz, P082 = 1680rpm P085 will be displayed in hp.

Read-only parameter that indicates the power rating of the inverter in kW. e.g. 0.55 = 550 W

Note:

If P101 = 1 then the rating is displayed in hp.

Read-only parameter.

1 = MICROMASTER 2nd Generation (MM2)

2 = COMBI MASTER

3 = MIDIMASTER

4 = MICROMASTER Junior (MMJ)

5 = MICROMASTER 3rd Generation (MM3)

6 = MICROMASTER Vector (MMV)

7 = MIDIMASTER Vector (MDV)

8 = COMBIMASTER 2nd Generation.

Read-only parameter; indicates the Vector model number according to the type range indicated by P112.

P113 P112 =

6

2

3

0

1

MMV12

MMV25

MMV37

MMV55

P112 =

7

P113 P112 = 6

MDV550/2

MDV750/2

15

16

MDV1100/2

17

MDV1500/2

18

MMV110/2

MMV150/2

MMV220/2

MMV300/2

P112 = 7

MDV3000/3

MDV3700/3

MDV4500/3

MDV5500/3

59

G85139-H1751-U529-D1

4/8/99

English

Parameter Function Range

[Default]

Description / Notes

6. SYSTEM PARAMETERS

10

11

12

13

14

6

7

4

5

8

MMV75 MDV1850/2

19

MMV110 MDV2200/2

20

MMV150 MDV3000/2

21

MMV220 MDV3700/2

22

MMV300 MDV4500/2

23

MMV12/2 MDV750/3

24

25

MMV25/2 MDV1100/3

26

MMV37/2 MDV1500/3

27

MMV55/2 MDV1850/3

28

MMV75/2 MDV2200/3

29

MMV400/2 MDV7500/3

MMV37/3

MMV55/3

MDV220/4

MDV400/4

MMV75/3 MDV550/4

MMV110/3 MDV750/4

MMV150/3 MDV1100/4

MMV220/3 MDV1500/4

MMV300/3 MDV1850/4

MMV400/3 MDV2200/4

MMV550/3 MDV3000/4

MMV750/3 MDV3700/4

P121

P122

Enable/disable

FORWARD/REVERSE button

P123

Enable/disable RUN button

Enable/disable JOG button

0 — 1

[1]

0 — 1

[1]

0 — 1

[1]

P124

Enable/disable

and

buttons 0 — 1

[1]

0 = RUN button disabled

1 = RUN button enabled (only possible if P007 = 1)

0 = FORWARD/REVERSE button disabled

1 = FORWARD/REVERSE button enabled (only possible if P007 = 1)

0 = JOG button disabled

1 = JOG button enabled (only possible if P007 = 1)

0 =

and

buttons disabled

1 =

and

buttons enabled (only possible if P007 = 1)

Note: This applies for frequency adjustment only. The buttons can still be used to change parameter values.

P125

Reverse direction inhibit 0 — 1

[1]

P128

Fan switch-off delay time

(seconds) (MMV only)

0 — 600

[120]

P131

Frequency setpoint (Hz) 0.00-650.00

[-]

P132

Motor current (A) 0.0 — 300.0

[-]

P133

Motor torque (% nominal torque) 0 — 250

[-]

P134

DC link voltage (V) 0 — 1000

[-]

P135

Motor RPM 0 — 9999

[-]

P137

Output voltage (V) 0 — 1000

[-]

P138

Instantaneous rotor / shaft frequency (Hz)(Vector mode only)

0 — 650

[-]

P139

Peak output current detect 0.0 — 99.9

[-]

This parameter can be used to prevent the inverter from running a motor in the reverse direction.

0 = Reverse direction disabled. Inhibits reverse commands from ALL sources (e.g. front panel, digital, analogue, etc.). All negative RUN commands (e.g. ON left, JOG left, REVERSE, etc.) result in

FORWARD rotation. Any negative result of setpoint addition is clipped at 0 Hz.

1 = Normal operation. Forward and reverse direction of rotation allowed.

Time taken for the fan to switch off following an OFF command.

Read-only parameters. These are copies of the values stored in P001 but can be accessed directly via the serial link.

Stores the peak current seen by the motor. Can be reset using

and

∇ buttons.

G85139-H1751-U529-D1

4/8/99 60

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function

P140

Most recent fault code

English

Range

[Default]

Description / Notes

0 — 255

[-]

Read only. The last recorded fault code (see section 7) is stored in this parameter. The stored value can be cleared by using the

and

∇ buttons. Or by resetting to factory defaults (P944)

P141

P142

P143

P186

Motor instantaneous current limit

(%)

P201

P202

P203

P207

P208

P210

P211

P212

P220

Most recent fault code -1

Most recent fault code -2

Most recent fault code -3

PID closed loop mode

P gain

I gain

P204

D gain

P205

Sample interval (x 25 ms)

P206

Transducer filtering

Integral capture range (%)

Transducer type

Transducer reading (%)

0% setpoint

100% setpoint

Frequency cut-off.

0 — 255

[-]

0 — 255

[-]

0 — 255

[-]

0 — 500*

(200)

This is a copy of the code stored in P930.

Read only. This parameter stores the last recorded fault code prior to that stored in P140/P930.

Read only. This parameter stores the last recorded fault code prior to that stored in P141.

Read only. This parameter stores the last recorded fault code prior to that stored in P142.

This parameter defines the instantaneous motor current limit as a % of the nominal motor current (P083). If the output current reaches this limit for three seconds, the inverter automatically reduces the current to the limit set in P086.

Note: * The maximum value that can be set for P186 is automatically limited by the rating of the inverter.

Torque limit operation is available, from 5Hz to 50Hz, when using

Vector Control mode (P077=3). The motor torque produced is a function of motor current. If P186 and P086 are equal, the current limit function can effectively be used as a torque limit.

0 = Normal operation (closed loop process control disabled).

1 = Closed loop process control using analogue input 2 as feedback.

Proportional gain.

0 — 1

[0]

0.0-999.9

[1.0]

0.00-99.9

[0]

0.0-999.9

[0]

1 — 2400

[1]

0 — 255

[0]

0 — 100

[100]

0 — 1

[0]

Integral gain.

0.01% corresponds to the longest integral action time.

Derivative gain.

Sampling interval of feedback sensor. The integral response rate is slowed down by this factor

0 =

Filter off.

1 — 255 = Low pass filtering applied to transducer.

Percentage error above which integral term is reset to zero.

0.00-100.00

[-]

0 = An increase in motor speed causes an increase in transducer voltage/current output.

1 = An increase in motor speed causes an decrease in transducer voltage/current output..

Read-only. Value is a percentage of full scale of the selected signal input

(i.e. 10 V or 20 mA).

Value of P210 to be maintained for 0% setpoint.

0.0 — 100.00

[0.0]

0.0 — 100.00

[100.00]

0 — 1

[0]

Value of P210 to be maintained for 100% setpoint.

0 = Normal operation.

1 = Switch off inverter output at or below minimum frequency.

Note: Active in all modes.

© Siemens plc 1999

61

G85139-H1751-U529-D1

4/8/99

English

Parameter Function Range

[Default]

Description / Notes

6. SYSTEM PARAMETERS

P321

Minimum analogue frequency for analogue setpoint 2 (Hz)

P322

Maximum analogue frequency for analogue setpoint 2 (Hz)

0 — 650.00

[0.00]

0 — 650.00

[50.00]

Frequency corresponding to the lowest analogue input value, i.e.

0 V/0 mA or 2 V/4 mA, determined by P323 and the settings of the DIP selector switches 4 and 5 (see Section 4.1.2). This can be set to a higher value than P322 to give an inverse relationship between analogue input and frequency output (see diagram in P322).

Frequency corresponding to the highest analogue input value, i.e.

10 V or 20 mA, determined by P323 and the setting of the DIP selector switches 4 and 5 (see Section 4.1.2).. This can be set to a lower value than P321 to give an inverse relationship between analogue input and frequency output.

f P322

P321

P323

P356

Analogue input 2 type

Digital input 6 configuration

P386

Sensorless vector speed control loop gain — proportional term

P387

Sensorless vector speed control loop gain — integral term

0 — 2

[0]

0 — 24

[6]

0.1 — 20.0

[1.0]

0.01- 10.0

[1.0]

P322

P321

V/ I

Sets analogue input type for analogue input 2, in conjunction with the settings of the DIP selector switches 4 and 5 (see, Section 4.1.2) :

0 = 0 V to 10 V/ 0 to 20 mA Unipolar input

1 = 2 V to 10 V/ 4 to 20 mA Unipolar input

2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start / stop when using analogue input control.

Note:

Setting P323 = 2 will not work unless the inverter is under full local control (i.e. P910 = 0 or 4) and V

1 V or 2mA.

WARNING:The inverter will automatically start when voltage goes above 1V or 2mA. This equally applies to both analogue and digital control (i.e. P006 = 0 or 1)

Control function selection, DIN 6

See P051 — P055 for description.

To optimise the dynamic performance of the vector control this parameter should be incremented whilst the inverter is operating under typical conditions until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 10%) until stability is restored. In general, the optimum setting required will be proportional to the load inertia. If this setting is too low or too high, rapid load changes may result in DC link overvoltage trips (F001) and/or unstable vector control.

See section 5.3.3 for further information .

Note: P386 = Load inertia + motor shaft inertia

motor shaft inertia

P386 must be optimised before adjusting P387. Whilst operating the inverter under typical conditions, increment this parameter until the first signs of speed instability occur. The setting should then be reduced slightly (approx. 30%) until stability is restored.

See section 5.3.3 for further information.

P700

P701

P702

Specific to PROFIBUS-DP. See PROFIBUS Handbook for further details. Access only possible with P099 = 1

G85139-H1751-U529-D1

4/8/99 62

© Siemens plc 1999

6. SYSTEM PARAMETERS

Parameter Function Range

[Default]

Description / Notes

English

P720

Direct input/output functions 0 — 7

[0]

Allows direct access to the relay outputs and the analogue output via the serial link (USS or PROFIBUS-DP with module):

0 = Normal operation

1 = Direct control of relay 1

2 = Direct control of relay 2

3 = Direct control of relay 1 and relay 2

4 = Direct control of analogue output 1 only

5 = Direct control of analogue output 1 and relay 1

6 = Direct control of analogue output 1 and relay 2

7 = Direct control of analogue output 1, relay 1 and relay 2

Read only. Displays the analogue input 1 voltage (approximate).

P721

P722

P723

State of digital inputs

P724

P725

P726

P880

P910

P922

P923

P930

P900 to

P970

Analogue input 1 voltage (V)

Analogue output 1 current (mA)

Relay output control

Analogue input 2 voltage (V)

Analogue output 2 current (mA)

(MDV only)

(Other than those listed below)

Local / USS mode

Software version

Equipment system number

Most recent fault code

0.0 — 10.0

[-]

0.0 — 20.0

[0.0]

0 — 3F

[-]

0 — 3

[0]

0.0-10.0

[-]

0.0-20.0

[0.0]

0 — 4

[0]

0.00 — 99.99

[-]

0 — 255

[0]

0 — 255

[-]

Allows direct control of the output current over the serial link if P720 =

4, 5, 6 or 7.

Read-only. Provides a HEX representation of a 6-digit binary number of which the LSB = DIN1 and the MSB = DIN6 (1 = ON, 0 = OFF).

e.g. If P723 = B, this represents ‘001011’ — DIN1, DIN2 and DIN4

= ON, DIN3 , DIN5 and DIN6 = OFF.

Enables control of the output relays. Used in conjunction with P720, e.g. setting P724 = 1 (relay 1 = ON) has no effect unless P720 = 1, 3,

5,or 7.

0 = Both relays OFF / de-energised

1 = Relay 1 ON / energised

2 = Relay 2 ON / energised

3 = Both relays ON / energised

Read only. Displays the analogue input 2 voltage (approximate) only when analogue input 2 is active (P051 to P055 or P356 = 24 and the respective digital input is high).

Allows direct control of the analogue output 2 current over the serial link if P720 = 4, 5, 6 or 7.

Specific to PROFIBUS-DP. See PROFIBUS Handbook for further details. Access only possible with P099 = 1

Specific to PROFIBUS-DP and CANbus operation. See PROFIBUS or CANbus Handbook for further details.

Access only possible with P099 = 1 or 2

Sets the inverter for local control or USS control over the serial link:

0 = Local control

1 = USS control (and setting of parameter values)

2 = Local control (but USS control of frequency)

3 = USS control (but local control of frequency)

4 = Local control (but USS read and write access to parameters and facility to reset trips)

Note:

When operating the inverter via USS control (P910 = 1 or 2 ), the analogue input remains active when P006 = 1 and is added to the setpoint.

Contains the software version number and cannot be changed.

You can use this parameter to allocate a unique reference number to the inverter. It has no operational effect.

See Parameter 140

© Siemens plc 1999

63

G85139-H1751-U529-D1

4/8/99

English

Parameter Function

P931

P944

Reset to factory default settings

P971

Most recent warning type

EEPROM storage control

6. SYSTEM PARAMETERS

Range

[Default]

Description / Notes

0 — 99

[-]

0 — 1

[0]

0 — 1

[1]

Read only. The last recorded warning is stored in this parameter until power is removed from the inverter. This can be cleared by using the and

buttons.

See section 7.2 for explanation of warning codes

Set to ‘1’ and then press P to reset all parameters except P101 to the factory default settings. Previously set parameters will be overwritten including the motor parameters P080 — P085 (See section 4.2)

0 = Changes to parameter settings (including P971) are lost when power is removed.

1 = Changes to parameter settings are retained during periods when power is removed.

IMPORTANT: When using the serial link to update the parameter set held in EEPROM, care must be taken not to exceed the maximum number of write cycles to this EEPROM — this is approximately 50,000 write cycles. Exceeding this number of write cycles would result in corruption of the stored data and subsequent data loss. The number of read cycles are unlimited.

G85139-H1751-U529-D1

4/8/99 64

© Siemens plc 1999

7. FAULT AND WARNING CODES English

7. FAULT AND WARNING CODES

7.1 Fault Codes

In the event of a fault, the inverter switches off and a fault code appears on the display. The last fault that occurred is stored in parameter P140, the preceding faults in P141 — P143.. e.g. ‘0004’ indicates that the last fault was F004

Fault Code Cause Corrective Action

F001

Overvoltage

F004

Overheating of motor

(monitoring with PTC)

Check whether supply voltage is within the limits indicated on the rating plate.

Increase the Ramp-down time (P003) or apply braking resistor (option).

Check whether the required braking power is within the specified limits.

F002

F003

Overcurrent

Overload

Check whether the motor power corresponds to the inverter power.

Check that the cable length limits have not been exceeded.

Check motor cable and motor for short-circuits and earth faults.Check

whether the motor parameters (P080 — P085) correspond with the motor being used.

Check the stator resistance (P089).

Increase the ramp-up time (P002).

Reduce the boost set in P078 and P079.

Check whether the motor is obstructed or overloaded.

Check whether the motor is overloaded.

Increase the maximum motor frequency if a motor with high slip is used.

Check if motor is overloaded.

Check the connections to the PTC.

Check that P087 has not been set to 1 without a PTC being connected.

F005

Inverter overtemperature

(internal heatsink sensor)

Check that the ambient temperature is not too high.

Check that the air inlet and outlet are not obstructed.

Check that the inverter’s integral fan is working

F008

USS protocol time-out

Check the serial interface.

Check the settings of the bus master and P091 — P093.

Check whether the time-out interval is too short (P093).

F009

Undervoltage

Check whether the supply voltage is within the limits indicated on the rating plate.

Check the supply is not subject to temporary failures or voltage reductions.

F010

Initialisation fault

F011

Internal interface fault

1

Check the entire parameter set. Set P009 to `0000′ before power down.

Switch off power and switch on again.

F012

External trip

Source of trip is digital input (configured as an external trip input) going low

— check the external source.

F013

Programme fault

1

Switch off power and switch on again.

F016

Sensorless vector control unstable Try calibrating the stator resistance (set P088 to 1 and RUN).

Alternatively try re-adjusting the sensorless vector control loop gain (see

P386).

F030

PROFIBUS link failure

Check the integrity of the link.

F031

PROFIBUS to inverter link failure

Check the integrity of the link.

F033

PROFIBUS configuration error

Check the PROFIBUS configuration.

F036

PROFIBUS module watchdog trip

Replace PROFIBUS module

F057

Delayed Trip (See P057)

P051 to P055 or P356 = 20 and trip input has remained low for longer than the time set in P057

F074

Motor overtemperature by I

2 t calculation

Trip occurs only if P074 = 4, 5, 6 or 7. Check that the motor current does not exceed the value set in P083 and P086.

F075

Over current during ramping down

Increase the ramp down time (P003).

F101

Internal interface fault

1

Switch off power and switch on again.

F105

Inverter overtemperature (internal sensor)

Check that the ambient temperature is not too high.

Check that the air inlet and outlet are not obstructed

Check that the inverter’s integral fan is working

© Siemens plc 1999

65

G85139-H1751-U529-D1

4/8/99

English

Fault Code

Cause

F106

Parameter fault P006

F112

Parameter fault P012/P013

F151-

F156

Digital input parameter fault

F188

Automatic calibration failure

7. FAULT AND WARNING CODES

Corrective Action

Parameterise fixed frequency(ies) on the digital inputs.

Set parameter P012 < P013.

Change the settings of digital inputs P051 to P055 and P356.

F201

P006 = 1 while P201 = 2

F212

Parameter fault P211/P212

F231

Output current measurement imbalance

F255

Watchdog Trip

Motor not connected to inverter — connect motor.

If the fault persists, set P088 = 0 and then enter the measured stator resistance of the motor into P089 manually.

Change parameter P006 and / or P201

Set parameter P211 < P212.

See F002

Remove prime power and re-apply

1

Ensure that the wiring guidelines described in section 1.2 have been complied with.

When the fault has been corrected the inverter can be reset. To do this press button P twice (once to display

P000 and the second time to reset the fault), or clear the fault via a binary input (see parameters P051 — P055

and P356 in section 6).

7.2 Warning Codes

In the event of a warning, the inverter display will flash. The last warning to occur is stored in parameter P931.

Warning Code Cause Corrective Action

002

Current limit active Check whether the motor power corresponds to the inverter power.

Check that the cable length limits have not been exceeded.

Check motor cable and motor for short-circuits and earth faults.

Check whether the motor parameters (P080 — P085) correspond with the motor being used.

Check the stator resistance (P089).

Increase the ramp-up time (P002).

Reduce the boost set in P078 and P079.

Check whether the motor is obstructed or overloaded.

Increase ramp time or fit breaking resistor

003

Voltage limit active

004

Slip limit exceeded

Check that motor is not overloaded, check motor parameters

005

Inverter overtemperature (heatsink) Check that the ambient temperature is not too high.

Check that the air inlet and outlet are not obstructed.

006

Motor over-temperature

Check that the inverter’s integral fan is working

Check if motor is overloaded.

Check that P087 has not been set to 1 without a PTC being connected.

010

15V power supply — current limit Check Connections

018

Auto re-start after fault (P018) is pending

075

Braking resistor — hot

WARNING: The inverter may start at any time.

G85139-H1751-U529-D1

4/8/99 66

© Siemens plc 1999

8. SPECIFICATIONS English

8. SPECIFICATIONS

230V Single Phase MICROMASTER Vector Inverters

Order No.(with built-in filter class A (6SE32)).

10-7BA40 11-5BA40 12-1BA40 12-8BA40 13-6BA40 15-2BB40 16-8BB40 21-0BC40 21-3BC40

Inverter model MMV12 MMV25 MMV37 MMV55 MMV75 MMV110 MMV150 MMV220

MMV300 c

Input voltage range

Motor output rating a (kW/hp)

Continuous output @ 230V

Output current (nom.) (A) a

0.12/ 1

0.75

/

6

350VA

0.25/ 1

/

3

660 VA

1.5

0.37/½

880 VA

2.1

1 AC 208V — 240 V +/-10%

0.55/¾ 0.75/ 1 1.1 / 1½

1.14 kVA

2.6

1.5 kVA

3.5

2.1 kVA

4.8

1.5 / 2

2.8 kVA

6.6

2.2 / 3

4.0 kVA

9.0

3.0/ 4

5.2kVA

11.8

Output current (max. continuous) (A)

Input current (max.) (A)

Recommended mains fuse(A)

Fuse order code

Recommended lead cross-section (min.)

Input

Output

0.9

1.8

1.7

3.2

10

3NA3803

1.0 mm 2

2.3

4.6

3.0

6.2

16

3NA3805

1.5 mm 2

3.9

8.2

5.5

11.0

20

3NA3807

7.4

14.4

2.5 mm 2

10.4

20.2

25

13.6

28.3

30

3NA3810 3NA3814

4.0 mm 2

1.0 mm 2 1.5 mm 2 2.5 mm 2

Dimensions (mm) (w x h x d) 73 x 175 x 141 149 x 184 x 172 185 x 215 x 195

Weight (kg / lb) 0.85 / 1.9

2.6 / 5.7

5.0 / 11.0

All 1 AC 230 V MICROMASTER Vector include integrated Class A filters. Optional external Class B filters are available (see section 9.3).

230 V 1/3 AC MICROMASTER Vector Inverters

Order No. (6SE32..)

Inverter model

Input voltage range

10-7CA40 11-5CA40 12-1CA40 12-8CA40 13-6CA40 15-2CB40 16-8CB40 21-0CC40 21-3CC40 21-8CC40

MMV12/2 MMV25/2 MMV37/2 MMV55/2 MMV75/2 MMV110/2 MMV150/2 MMV220/2 MMV300/2 c

MMV400/2

1 — 3 AC 208V — 240 V +/-10% 3 AC

0.12/

1

/

6

0.25/

1

/

3

0.37/½ 0.55/¾ 0.75/ 1 1.1 / 1½ 1.5 / 2 2.2 /3 3.0 / 4 4.0 /5

Motor output rating a(kW/hp)

Continuous output @ 230V

Output current (nom.) (A) a

Output current (max. continuous) (A)

Input current (I rms) (1 AC / 3

AC)

480VA 660 VA 880 VA 1.14 kVA 1.5 kVA 2.1 kVA 2.8 kVA 4.0 kVA 5.2 kVA 7.0kVA

0.8

1.5

2.1

2.6

3.5

4.8

0.9

1.7

2.3

3.0

3.9

5.5

1.8/1.1A

3.2/1.9A

4.6/2.7A

6.2/3.6A

8.2/4.7A 11.0/6.4

A

10 16

6.6

7.4

14.4/8.3

A

20

9.0

11.8

10.4

13.6

20.2/11.7A 28.3/16.3

A

25 30

15.9

17.5

-/21.1 A

Recommended mains fuse(A) b

25

Fuse order code

Recommended lead cross-section (min.)

Input

3NA3803

1.0 mm

2

3NA3805

1.5 mm

2

3NA3807 3NA3810

2.5 mm

2

3NA3814 3NA3810

4.0 mm

Output 1.0 mm 2 1.5 mm 2 2.5 mm 2

Dimensions (mm) (w x h x d)

Weight (kg / lb)

73 x 175 x 141

0.75 / 1.7

149 x 184 x 172

2.4 / 5.3

185 x 215 x 195

4.8 / 10.5

All 1 AC and 3 AC 230 V MICROMASTERS (excluding MMV400/2) are suitable for 208 V operation.

All 3 AC 230 V MICROMASTER Vector can operate on 1 AC 230 V (MMV300/2 requires an external line choke, e.g. 4EM6100-3CB).

2

380 V — 500 V Three Phase MICROMASTER Vector Inverters

Order No. (6SE32..)

Inverter model

Input voltage range

11-1DA40 11-4DA40 12-0DA40 12-7DA40 14-0DA40 15-8DB40 17-3DB40 21-0DC40 21-3DC40 21-5DC40

MMV37/3 MMV55/3 MMV75/3 MMV110/3 MMV150/3 MMV220/3 MMV300/3 MMV400/3 MMV550/3 MMV750/3

3 AC 380 V — 500 V +/-10%

0.37 /½ 0.55 / ¾ 0.75 / 1 1.1 /1½ 1.5 / 2 2.2 / 3 3.0 / 4 4.0 / 5 5.5 / 7½ 7.5 / 10

Motor output rating a (kW/ hp)

Continuous output @ 400V a

Output current (nom.) (A)

Output current (max. continuous) (A)*

Input current (max.) (A)

Recommended mains fuse(A)

Fuse order code

Recommended lead cross-section (min.)

Input

Output

930VA 1180VA 1530VA 2150VA 2.8 kVA 4.0 kVA 5.2 kVA 7.0 kVA 9.0 kVA 12.1 kVA

1.2

1.2

2.2

1.5

1.6

2.8

2.0

2.1

3.7

10

3NA3803

1.0 mm 2

2.8

3.0

4.9

3.7

4.0

5.9

1.5 mm 2

5.2

5.9

8.8

16

3NA3805

6.8

7.7

11.1

9.2

10.2

13.6

20

3NA3807

11.8

13.2

17.1

2.5 mm 2

15.8

17.5

22.1

25

3NA3810

4.0 mm 2

1.0 mm

2

1.5 mm

2

Dimensions (mm) (w x h x d)

Weight (kg / lb)

73 x 175 x 141

0.75 / 1.7

149 x 184 x 172

2.4 / 5.3

185 x 215 x 195

4.8 / 10.5

Optional external Class A and Class B filters are available (see section 9.3).

.

a

Notes:

b

Siemens 4 pole-motor, 1LA5 series or equivalent.

Assumes 3-phase supply. If a single phase supply is used, the input current ratings, wire sizes and fuses for single phase

2.5 mm

2

c

MMV300 and MMV300/2 require an external choke (e.g. 4EM6100-3CB) and a 30 A mains fuse to operate on a single phase supply.

*

Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.

© Siemens plc 1999

67

G85139-H1751-U529-D1

4/8/99

English 8. SPECIFICATIONS

380 V — 480 V Three Phase MICROMASTER Vector Inverters with built-in Class A filter

Order No. (6SE32..)

Inverter model

Input voltage range

15-8DB50 17-3DB50 21-0DC50

MMV220/3F MMV300/3F MMV400/3F

3 AC 380 V — 480 V +/-10%

2.2 / 3 3.0 / 4 4.0 / 5

21-3DC50

MMV550/3F

Motor output rating a (kW/ hp)

5.5 / 7½

Continuous output @ 400V a

Output current (nom.) (A)

Output current (max. continuous) (A)*

Input current (max.) (A)

Recommended mains fuse(A)

Fuse order code

Recommended lead cross-section (min.)

Input

Output

4.0 kVA

5.2

5.9

8.8

16

1.5 mm

2

3NA3805

5.2 kVA

6.8

7.7

11.1

7.0 kVA

1.0 mm 2

Dimensions (mm) (w x h x d) 149 x 184 x 172

Weight (kg / lb) 2.4 / 5.3

Class B may be achieved by adding a Class B footprint filter to an unfiltered inverter

9.2

10.2

13.6

20

2.5 mm

2

3NA3807

9.0 kVA

11.8

13.2

17.1

1.5 mm 2

185 x 215 x 195

4.8 / 10.5

21-5DC50

MMV750/3F

7.5 / 10

12.1 kVA

15.8

17.0

22.1

25

3NA3810

4.0 mm

2

2.5 mm 2

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP20 / NEMA 1 with integrated filter

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

Motor output rating (kW/hp)

Continuous output (kVA) @230V

Output current (max. continuous) (A)

Input current (max.) (A)

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm

2

)

Input (min.)

Output (min.)

Dimensions (mm)

(w x h x d)

Weight (kg)

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

230 V Three Phase MIDIMASTER Vector Inverters

22-3CG40

22-3CG50

22-3CS45

23-1CG40

23-1CG50

23-1CS45

24-2CH40

24-2CH50

24-2CS45

25-4CH40

25-4CH50

25-4CS45

MDV550/2

CT VT

MDV750/2

CT VT

MDV1100/2

CT VT

MDV1500/2

CT VT

26-8CJ40

26-8CJ50

26-8CS45

MDV1850/2

CT VT

27-5CJ40

27-5CJ50

27-5CS45

MDV2200/2

CT VT

3 AC 208V — 240 V +/-10%

5.5/ 7.5 7.5/ 10 7.5/ 10 11/ 15 11/ 15 15/ 20 18.5/25 18.5/25 22/ 30 22/ 30 30/ 40

8.8

22

11.2

28

11.2

28

16.7

42

16.7

42

21.5

54

27.1

68

27.1

68

31.9

80

31.9

80

35.8

95

45 61 87 100 32

50

3NA3820

6 10

63

3NA3822

16 n/a

75

80

3NA3824

25

100

3NA3830

35

6 n/a 25 35 4

275 x 450 x 210

275 x 700 x210

275 x 550 x 210

275 x 800 x 210

10 16

275 x 650 x 285

275 x 920 x 285

360 x 675 x 351

11.0

18

30.5

14.5

22

360 x 775 x 422

15.5

23

38.0

40.0

26.5

37

50.5

360 x 875 x 483

27.0

38

52.5

27.5

38

54.5

*

Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.

G85139-H1751-U529-D1

4/8/99 68

© Siemens plc 1999

8. SPECIFICATIONS

230 V Three Phase MIDIMASTER Vector Inverters

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP20 / NEMA 1 with integrated filter

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

Motor output rating (kW/hp)

Continuous output (kVA) @230V

Output current (max. continuous) (A)

Input current (max.) (A)

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm 2 )

Input (min.)

Output (min.)

31-0CK40

31-0CK50

31-0CS45

MDV3000/2

CT VT

31-3CK40

31-3CK50

31-3CS45

MDV3700/2

CT VT

3 AC 208V — 240 V +/-10%

30/ 40 37/ 50 37/ 50 45/ 60 45/ 60

41.4

51.8

51.8

61.3

61.3

104 130 130 154 154

143 170

160

3NA3036

70

200

3NA3140

95

50 70 70 95

31-5CK40

31-5CK50

31-5CS45

MDV4500/2

CT VT

170

Dimensions (mm)

(w x h x d)

Weight (kg)

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

55 0

85

80

420 x 850 x 310

420 x 1150 x 310

500 x 1150 x 570

55.5

86

85

56.5

87

90

English

© Siemens plc 1999

69

G85139-H1751-U529-D1

4/8/99

English 8. SPECIFICATIONS

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP20 / NEMA 1 with integrated filter

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

Motor output rating (kW/hp)

Continuous output (kVA) @400V

Output current (max. continuous)

@ 400 V (A)

*

Input current (max.) (A)

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm 2 )

Input (min.)

Output (min.)

Dimensions (mm)

(w x h x d)

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA

4/12

Weight (kg) IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA

4/12

380 V — 500 V Three Phase MIDIMASTER Vector Inverters

21-7DG40

21-7DG50

21-7DS45

MDV750/3

CT VT

22-4DG40

22-4DG50

22-4DS45

MDV1100/3

CT VT

23-0DH40

23-0DH50

23-0DS45

MDV1500/3

CT VT

23-5DH40

23-5DH50

23-5DS45

MDV1850/3

CT VT

24-2DJ40

24-2DJ50

24-2DS45

MDV2200/3

CT VT

25-5DJ40

25-5DJ50

25-5DS45

MDV3000/3

CT VT

26-8DJ40

26-8DJ50

26-8DS45

MDV3700/3

CT VT

7.5/

10

12.

7

19 23.

5

11 /

15

16.

3

11/15 15/20 15/20

18

26

30 32

4

32

3NA3814

6

275 x 450 x 210

275 x700 x 210

20.8

30

22.2

32

6

3 AC 380 V — 500 V +/-10%

185/25

25.6

37

185/25 22/30 22/30 30/40 30/40 37/50 37/50 45/60

26.3

38

30.1

43. 5

41

10

49

50

3NA3820

275 x 550 x 210

275 x 800 x210

16

10

31.2

45

64

25

40.2

58

40.2

58

80

3NA3824

79

48.8

71

16

275 x 650 x 285

275 x 920 x285

35

49.9

72

96

100

3NA3830

25

50.2

84

11.5

19

360 x 675 x 351

12.0

19

28.5

30.5

16.0

23

360 x 775 x 422

17.0

24

38 40

27.5

38

50.5

360 x 875 x 483

28.0

39

52.5

28.5

39

54.5

380 V — 500 V Three Phase MIDIMASTER Vector Inverters

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP20 / NEMA 1 with integrated filter

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

28-4DK40

28-4DK50

28-4DS45

CT

MDV4500/3

VT

31-0DK40

31-0DK50

31-0DS45

MDV5500/3

CT VT

Motor output rating (kW/hp)

Continuous output (kVA) @400V

Output current (max. continuous)

@ 400 V (A)

*

Input current (max.) (A)

45 / 60

58.2

84

55 / 75

70.6

102

31-4DK40

31-4DK50

31-4DS45

CT

MDV7500/3

VT

3 AC 380 V — 500 V +/-10%

55 / 75

70.6

102

75 / 100

95.6

138

75 / 100

95.6

138

90 / 120

116

168

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm

2

)

Dimensions (mm)

(w x h x d)

Input (min.)

Output (min.)

IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

Weight (kg) IP21 / NEMA 1

IP20 / NEMA 1 with integrated filter

IP56 / NEMA 4/12

113

125

3NA3032

50

50

57.0

87

80

152

160

3NA3036

70

70

420 x 850 x 310

420 x1150 x 310

500 x 1150 x 570

58.5

88

85

185

200

3NA3140

95

95

60

90

90

*

Output current ratings are reduced by 10% when operating on mains supply voltages over 460V.

G85139-H1751-U529-D1

4/8/99 70

© Siemens plc 1999

8. SPECIFICATIONS English

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

Motor output rating (kW/hp)

Continuous output (kVA) @ 575V

Output current (max. continuous) @ 575 V

(A)

Input current (max.) (A)

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm

2

)

Dimensions (mm)

(w x h x d)

Weight (kg)

Input (min.)

Output (min.)

IP21 / NEMA 1

IP56 / NEMA 4/12

IP21 / NEMA 1

IP56 / NEMA 4/12

525V — 575 V Three Phase MIDIMASTER Vector Inverters

13-8FG40

13-8FS45

16-1FG40

16-1FS45

MDV220/4 MDV400/4

CT VT CT VT

18-0FG40

18-0FS45

MDV550/4

CT VT

21-1FG40

21-1FS45

MDV750/4

CT VT

21-7FG40

21-7FS45

MDV1100/4

CT VT

22-2FH40

22-2FS45

22-7FH40

22-7FS45

MDV1500/4 MDV1850/4

CT VT CT VT

2.2 / 3 4 / 5 4 / 5

3.9

6.1

6.1

3.9

6.1

6.1

7

10

3NA3803 — 6

1.5

10

1.5

11.0

22.0

11.5

24.0

9.0

9.0

11

3 AC 525V — 575 V +/-15%

5.5 / 7.5

5.5 / 7.5

7.5 / 10 7.5 / 10 11 / 15 11 / 15 15 / 20 15 / 20 18.5/ 25 18.5/

25

22 / 30.

13. 9 16.9

19.4

21.9

23.5

26.9

28.4

31.8

9.0

9.0

11 11. 0 17.0

17.0

22.0

22.0

27.0

27.0

32.0

12

16

3NA3805 — 6

2.5

275 x 450 x 210

360 x 675 x 351

11.5

26.0

18

25

3NA3810 — 6

4

2.5

11.5

29.0

24

12.0

30.0

32

3NA3814 — 6

4

29 34

40

3NA3820 — 6

10 6

275 x 550 x 210

6

360 x 775 x 422

16.0

17.0

39.0

40.0

525V — 575 V Three Phase MIDIMASTER Vector Inverters

Order No. — IP21 / NEMA 1 (6SE32..)

Order No. — IP56 / NEMA 4/12 (6SE32..)

Inverter model

Constant Torque (CT)

Variable Torque (VT)

Input voltage range

Motor output rating (kW/hp)

Continuous output (kVA) @ 575V

Output current (max. continuous) @ 575 V (A)

Input current (max.) (A)

Recommended mains fuse (A)

Fuse order code

Recommended lead cross-section (mm

2

)

Dimensions (mm)

(w x h x d)

Weight (kg)

Input (min.)

Output (min.)

IP21 / NEMA 1

IP56 / NEMA 4/12

IP21 / NEMA 1

IP56 / NEMA 4/12

23-2FJ40

23-2FS45

CT

MDV2200/4

VT

22 / 30

33.6

32.0

30 / 40

40.8

41.0

45

50

3NA3820 — 6

10

27.5

50.0

10

24-1FJ40

24-1FS45

CT

MDV3000/4

VT

3 AC 525V — 575 V +/-15%

30 / 40

44.6

41.0

37 / 50

51.7

52.0

55

63

3NA3822 — 6

16

275 x 650 x 285

360 x 875 x 483

28.0

52.0

CT

25-2FJ40

25-2FS45

MDV3700/4

VT

37 / 50

54.4

52.0

65

80

3NA3824 — 6

45 / 60

61.7

62.0

25

16

28.5

54.0

© Siemens plc 1999

71

G85139-H1751-U529-D1

4/8/99

English 8. SPECIFICATIONS

Input frequency:

Mains supply impedance:

Power factor:

Output frequency range:

Resolution:

Overload capability:

Protection against:

Additional protection:

Operating mode:

Regulation and control:

Analogue input / PID input:

Analogue setpoint resolution:

Analogue output:

Setpoint stability:

Motor temperature monitoring:

Ramp times:

Control outputs:

Interface:

Inverter efficiency:

Operating temperature:

Storage/transport temperature:

Ventilation:

Humidity:

Installation height above sea level:

47 Hz to 63 Hz

> 1% (fit input choke if < 1%)

0.7

0 Hz to 650 Hz

0.01 Hz

200% for 3 s and then 150% for 60 s (related to nominal current)

Inverter overtemperature.

Overvoltage and undervoltage

Against short-circuits and earth/ground faults pull-out protection.

Protection against running with no load (open-circuit)

4 quadrants possible.( Re-generation back into mains not possible ).

Sensorless vector; FCC (Flux Current Control); voltage/frequency curve;

Unipolar: 0 ~ 10 V/ 2 ~ 10 V (recommended potentiometer 4.7 k

)

0 ~ 20 mA/ 4 ~ 20 mA

Bipolar: -10 ~ 0 ~ +10V

10-bit

0 — 20 mA/4 — 20 mA @ 0 — 500

; stability 5%

Analogue < 1%

Digital < 0.02%

PTC input, l

2 t control

0 — 650 s

2 relays 230 V AC / 0.8 A (overvoltage cat.2); 30 V DC / 2 A

WARNING: External inductive loads must be suppressed

(see section 1.2)

RS485

97%

0 o

C to +50 o

-40 o

C (MMV), 0 o

C to +40 o

C (MDV)

C to +70 o

C

Fan cooling (software controlled)

95% non-condensing

< 1000 m

Degree of protection:

Protective separation of circuits:

MMV: IP20 (NEMA 1) (National Electrical Manufacturers’ Association)

MDV: IP21 (NEMA 1) and IP56 (NEMA 4/12)

Double insulation or protective screening.

Electromagnetic compatibility (EMC):

See section 9.3

Options / Accessories

Braking resistor (MMV only)

Braking Unit (MDV only)

RFI suppression filter

IP20 / NEMA 1 Accessory kit (MMV.FSA only)

Clear Text Display (OPM2)

PROFIBUS Module (CB15)

CANbus Module (CB16)

SIMOVIS software for control via PC

Output chokes and line chokes

Output filters

Please contact your local

Siemens sales office for further details.

G85139-H1751-U529-D1

4/8/99 72

© Siemens plc 1999

9. SUPPLEMENTARY INFORMATION

9. SUPPLEMENTARY INFORMATION

9.1 Application Example

Set-up procedure for a simple application

Motor: 230 V

1.5 kW output power

Application requirements: Setpoint adjustable via potentiometer 0 — 50 Hz

Ramp-up from 0 to 50 Hz in 15 seconds

Ramp-down from 50 to 0 Hz in 20 seconds

MMV150 (6SE3216-8BB40) Inverter used:

Settings: P009 = 2 (all parameters can be altered)

P080 — P085 = values given on motor rating plate

P006 = 1 (analogue input)

P002 = 15 (Ramp-up time)

P003 = 20 (Ramp-down time)

This application is now to be modified as follows:

V

220

Operation of motor up to 75 Hz

(voltage/frequency curve is linear up to 50 Hz).

Motor potentiometer setpoint in addition to analogue setpoint .

Use of analogue setpoint at maximum 10 Hz.

English

50

75 f (Hz)

Settings: P009 = 2 (all parameters can be altered)

P013 = 75 (maximum motor frequency in Hz)

P006 = 2 (setpoint via motor potentiometer or fixed setpoint)

P024 = 1 (analogue setpoint is added)

P022 = 10 (maximum analogue setpoint at 10 V = 10 Hz)

9.2 USS Status Codes

The following list gives the meaning of status codes displayed on the front panel of the inverter when the serial link is in use and parameter P001 is set to 006:

001

002

100

101

102

103

104

Message OK

Slave address received

Invalid start character

Time-out

Checksum error

Incorrect message length

Parity fail

Notes

(1)

(2)

The display flashes whenever a byte is received, thus giving a basic indication that a serial link connection is established.

If ‘100’ flashes on the display continuously, this usually indicates a bus termination fault.

© Siemens plc 1999

73

G85139-H1751-U529-D1

4/8/99

English 9. SUPPLEMENTARY INFORMATION

9.3 Electro-Magnetic Compatibility (EMC)

All manufacturers / assemblers of electrical apparatus which performs a complete intrinsic function which is placed on the market as a single unit intended for the end user must comply with the EMC directive

EEC/89/336 after January 1996. There are three routes by which the manufacturer/assembler can demonstrate compliance:

1.

Self-Certification

This is a manufacturer’s declaration that the European standards applicable to the electrical environment for which the apparatus is intended have been met. Only standards which have been officially published in the Official Journal of the European Community can be cited in the manufacturer’s declaration.

2.

3.

Technical Construction File

A technical construction file can be prepared for the apparatus describing its EMC characteristics. This file must be approved by a ‘Competent Body’ appointed by the appropriate European government organisation. This approach allows the use of standards which are still in preparation.

EC Type-Examination Certificate

This approach is only applicable to radio communication transmitting apparatus.

The MICROMASTER Vector and MIDIMASTER Vector units do not have an intrinsic function until connected with other components (e.g. a motor). Therefore, the basic units are not allowed to be CE marked for compliance with the EMC directive. However, full details are provided below of the EMC performance characteristics of the products when they are installed in accordance with the wiring recommendations in section 1.2.

Compliance Table (MMV):

Model No.

MMV12 — MMV300

MMV12/2 — MMV400/2

MMV12/2 — MM400/2 with external filter (see table) 1 phase input only

MMV37/3 — MMV750/3

MMV220/3F — MMV750/3F

MMV37/3 — MMV750/3 with external filter (see table, class A)

MMV37/3 — MMV750/3 with external filter (see table, class B)

EMC Class

Class 2

Class 1

Class 2*

Class 1

Class 2*

Class 2*

Class 3*

Compliance Table (MDV):

Model No.

MDV750/3 — MDV7500/3

MDV550/2 — MDV4500/2 with class A external filter (see table)

MDV550/2 — MDV1850/2 with class B external filter (see table)

MDV550/2 — MDV4500/2

MDV750/3 — MDV7500/3 with class A external filter (see table)

MDV750/3 — MDV3700/3 with class B external filter (see table)

MDV750/4 — MDV3700/4

EMC Class

Class 1

Class 2*

Class 3*

Class 1

Class 2*

Class 2*

Class 1

* If the installation of the inverter reduces the radio frequency field emissions (e.g. by installation in a steel enclosure), Class 3 radiated emission limits will typically be met.

G85139-H1751-U529-D1

4/8/99 74

© Siemens plc 1999

9. SUPPLEMENTARY INFORMATION English

Filter Part Numbers:

Inverter Model No.

Class A Filter Part No. Class B Filter Part No. Standard

MMV12 — MMV300

MMV220F — MMV750F

MMV12/2 — MMV25/2

MMV37/2 — MMV75/2

MMV110/2 — MMV150/2

MMV220/2 — MMV300/2

MMV37/3 — MMV150/3

MMV220/3 — MMV300/3

MMV400/3 — MMV750/3

MDV550/2

Built-in

Built-in EN 55011 / EN 55022

6SE3290-0BA87-0FB0 EN 55011 / EN 55022

6SE3290-0BA87-0FB2 EN 55011 / EN 55022

6SE3290-0BB87-0FB4 EN 55011 / EN 55022

6SE3290-0BC87-0FB4 EN 55011 / EN 55022

6SE3290-0DA87- 0FA1 6SE3290-0DA87-0FB1 EN 55011 / EN 55022

6SE3290-0DB87- 0FA3 6SE3290-0DB87-0FB3 EN 55011 / EN 55022

6SE3290-0DC87- 0FA4 6SE3290-0DC87-0FB4 EN 55011 / EN 55022

6SE3290-0DG87- 0FA5 6SE2100-1FC20

MDV750/2 6SE3290-0DH87- 0FA5 6SE2100-1FC20

MDV1100/2 — MDV1850/2 6SE3290-0DJ87- 0FA6 6SE2100-1FC21

MDV2200/2 6SE3290-0DJ87- 0FA6

MDV3000/2 — MDV4500/2 6SE3290-0DK87- 0FA7

MDV 750/3 — MDV1100/3 6SE3290-0DG87- 0FA5 6SE2100-1FC20

MDV1500/3 — MDV1850/3 6SE3290-0DH87- 0FA5 6SE2100-1FC20

MDV2200/3 — MDV3700/3 6SE3290-0DJ87- 0FA6 6SE2100-1FC21

MDV4500/3 — MDV7500/3 6SE3290-0DK87- 0FA7

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

EN 55011 / EN 55022

Note: Maximum mains supply voltage when filters are fitted is 460V.

Three classes of EMC performance are available as detailed below. Note that these levels of performance are only achieved when using the default switching frequency (or less) and a maximum motor cable length of 25 m.

Class 1: General Industrial

Compliance with the EMC Product Standard for Power Drive Systems EN 61800-3 for use in Second

Environment (Industrial) and Restricted Distribution.

EMC Phenomenon

Emissions:

Radiated Emissions

Conducted Emissions

Immunity:

Electrostatic Discharge

Burst Interference

Radio Frequency Electromagnetic Field

Standard

EN 55011

EN 61800 — 3

EN 61000-4-2

EN 61000-4-4

IEC 1000-4-3

Level

Level A1 *

*

8 kV air discharge

2 kV power cables, 1 kV control

26-1000 MHz, 10 V/m

*

Emission limits not applicable inside a plant where no other consumers are connected to the same electricity supply transformer.

© Siemens plc 1999

75

G85139-H1751-U529-D1

4/8/99

English 9. SUPPLEMENTARY INFORMATION

Class 2: Filtered Industrial

This level of performance will allow the manufacturer/assembler to self-certify their apparatus for compliance with the EMC directive for the industrial environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the Generic Industrial Emissions and Immunity standards EN 50081-2 and EN 50082-2.

Standard Level EMC Phenomenon

Emissions:

Radiated Emissions

Conducted Emissions

EN 55011

EN 55011

Level A1

Level A1

Immunity:

Supply Voltage Distortion

Voltage Fluctuations, Dips, Unbalance,

Frequency Variations

Magnetic Fields

Electrostatic Discharge

Burst Interference

Radio Frequency Electromagnetic Field, amplitude modulated

Radio-frequency Electromagnetic Field, pulse modulated

IEC 1000-2-4 (1993)

IEC 1000-2-1

EN 61000-4-8

EN 61000-4-2

EN 61000-4-4

ENV 50 140

ENV 50 204

50 Hz, 30 A/m

8 kV air discharge

2 kV power cables, 2 kV control

80-1000 MHz, 10 V/m, 80% AM, power and signal lines

900 MHz, 10 V/m 50% duty cycle,

200 Hz repetition rate

Class 3: Filtered — for residential, commercial and light industry

This level of performance will allow the manufacturer / assembler to self-certify compliance of their apparatus with the EMC directive for the residential, commercial and light industrial environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the generic emission and immunity standards EN 50081-1 and EN 50082-1.

Standard Level EMC Phenomenon

Emissions:

Radiated Emissions

Conducted Emissions

EN 55022

EN 55022

Level B1

Level B1

Immunity:

Electrostatic Discharge

Burst Interference

EN 61000-4-2

EN 61000-4-4

8 kV air discharge

1 kV power cables, 0.5 kV control

Note:

The MICROMASTER Vector and MIDIMASTER Vector units are intended exclusively for

professional applications. Therefore, they do not fall within the scope of the harmonics emissions specification EN 61000-3-2.

G85139-H1751-U529-D1

4/8/99 76

© Siemens plc 1999

9. SUPPLEMENTARY INFORMATION English

9.4 Environmental Aspects

Transport and Storage

Protect the inverter against physical shocks and vibration during transport and storage. The unit must also be protected against water (rainfall) and excessive temperatures (see section 8).

The inverter packaging is re-usable. Retain the packaging or return it to the manufacturer for future use.

Dismantling and Disposal

The unit can be broken-down to it’s component parts by means of easily released screw and snap connectors.

The component parts can be re-cycled, disposed of in accordance with local requirements or returned to the manufacturer.

Documentation

This handbook is printed on chlorine-free paper which has been produced from managed sustainable forests.

No solvents have been used in the printing or binding process.

© Siemens plc 1999

77

G85139-H1751-U529-D1

4/8/99

English

9.5 User’s Parameter

Settings

Record your own parameter settings in the tables below (Note: ¶¶¶ =

Value depends on the rating of the inverter):

Parameter Your setting

Default

P000

P001

0

P023

P024

P025

P026

P027

P028

P029

P031

P032

P033

P034

P040

P041

P015

P016

P017

P018

P019

P021

P022

P002

P003

P004

P005

P006

P007

P009

P010

P011

P012

P013

P014

P042

P043

P044

P045

P046

P047

P048

P049

P050

P051

P052

P053

P054

0.00

0.00

0.00

5.00

5.00

0

0

0

0

10.0

10.0

0

5.00

1

0

0

0

2.00

0.00

50.00

10.0

10.0

0.0

5.00

0

1

0

1.00

0

0.00

50.00

0.00

10.00

15.00

20.00

0

25.0

30.0

35.0

40.0

0

1

2

6

6

G85139-H1751-U529-D1

4/8/99

Parameter

P121

P122

P123

P124

P125

P128

P131

P132

P133

P134

P135

P137

P087

P088

P089

P091

P092

P093

P094

P095

P099

P101

P111

P112

P113

P071

P072

P073

P074

P075

P076

P077

P078

P079

P055

P056

P057

P061

P062

P063

P064

P065

P066

P069

P070

P080

P081

P082

P083

P084

P085

P086

Your setting

Default

120

1

1

1

1

1

0

0

¶¶¶

0

6

0

50.00

0

0

0

¶¶¶

¶¶¶

¶¶¶

0

250

0

3

0

0/4

1

100

0

8

1.0

1.0

1.0

0

1

0

6

0

1.0

6

¶¶¶

50.00

¶¶¶

¶¶¶

¶¶¶

¶¶¶

150

9. SUPPLEMENTARY INFORMATION

Your setting

Default

0

0.0

0

0.0

0

0

50.00

0

6

1.0

1.0

1.0

0.00

0.0

1

0

100

0

200

0

0.0

100.00

0

0.00

1

0

© Siemens plc 1999

Parameter

P702

P720

P721

P722

P723

P724

P725

P726

P880

P910

P918

P922

P923

P322

P323

P356

P386

P387

P700

P701

P927

P928

P930

P931

P944

P947

P958

P963

P967

P968

P970

P971

P202

P203

P204

P205

P206

P207

P208

P210

P211

P212

P220

P321

P138

P139

P140

P141

P142

P143

P186

P201

78

Herausgegeben vom

Bereich Automatisierungs- und Antriebstechnik (A&D)

Geschäftsgebiet Standard Drives

Postfach 3269, D-91050 Erlangen

Bestell-Nr. 6SE3286-4AB66

*6SE3286-4AB66*

Änderungen vorbehalten

Specification subject to change without prior notice

Siemens plc

Automation & Drives

Standard Drives Division

Siemens House

Varey Road

Congleton CW12 1PH

G85139-H1751-U529-D1

*H1751-U529-D1*

© Siemens plc 1999

Printed in England

English

Parameter Function

P077

Control mode

P078 ·

Continuous boost (%)

MMV

MDV (P077=3)

MDV (P077=0, 1 or 2)

P079 ·

Starting boost (%)

P080

Nominal rating plate motor power

factor (cosj)

P081

Nominal rating plate frequency for

motor (Hz)

P082

Nominal rating plate speed for motor

(RPM)

P083

Nominal rating plate current for motor

(A)

P084

Nominal rating plate voltage for motor

(V)

P085

Nominal rating plate power for motor

(kW)

P086 ·

Motor current limit (%)

P087 ·

Motor PTC enable

G85139-H1751-U529-D1

4/8/99

Range

Description / Notes

[Default]

0 — 3

Controls the relationship between the speed of the motor and the voltage

supplied by the inverter. One of four modes can be selected:

(1)

0 = V/f curve

1 = FCC control

2 = Quadratic V/f

3 = Vector Control

Note: When Sensorless Vector Control is selected (P077 = 3), P088 will

automatically be set to 1, so that on first run-up, the inverter will

measure the stator resistance of the motor and calculate motor

constants from the rating plate data in P080 to P085.

For many applications it is necessary to increase low frequency torque. This

0 — 250

parameter sets the start-up current at 0 Hz to adjust the available torque for low

[100]

frequency operation. 100% setting will produce rated motor current (P083) at

[100]

low frequencies.

[50]

WARNING:

0 — 250

For drives which require a high initial starting torque, it is possible to set an

[0]

additional current (added to the setting in P078) during ramp duration (P002).

This is only effective during initial start up and until the frequency setpoint is

reached.

WARNING:

0.00-1.00

[¶¶¶]

If efficiency is shown on the motor rating plate, calculate the power factor as

follows: pf =

If neither power factor nor efficiency are shown on the motor rating plate — set

P080 = 0.

0 — 650.00

[50.00]

Notes:

0 — 9999

[¶¶¶]

1 These parameters P080 to P085 must be set for the particular motor used.

Read the figures from the motor rating plate (see Figure 4.2..1 ).

2 It will be necessary to perform an automatic calibration (P088 = 1) if P080 to

0.1-300.0

[¶¶¶]

P085 are changed from their factory default settings.

0 — 1000

3 When the inverter is set-up for North American operation (P101=1); P081 will

[¶¶¶]

default to 60Hz and P085 will indicate hp (0.16 — 250)

0.12-250.00

[¶¶¶]

0 — 250

Defines the motor overload current as a % of the Nominal motor current (P083)

allowed for up to one minute.

[150]

With this parameter and P186, the motor current can be limited and

overheating of the motor prevented. If the value set in P083 is exceeded for

one minute, (or longer if the overload is small) , the output frequency is reduced

until the current falls to that set in P083. The inverter display flashes as a

warning indication but the inverter does not trip. The inverter can be made to

trip using P074.

Note:

The maximum value that P086 can be set to is automatically limited by

the rating of the inverter. Further, the power can be automatically

reduced for pulse frequencies which differ from the factory setting

(refer to P076)

0 — 1

0 = Disabled

1 = External PTC enabled

[0]

Note:

If motor thermal protection is required, then an external PTC must

be used and P087 = 1. If P087 = 1 and the PTC input goes high

then the inverter will trip (fault code F004 displayed).

56

6. SYSTEM PARAMETERS

hp x 746

1.732 x efficiency x nom. volts x nom. amps

If P078 is set too high, overheating of the motor and/or

an overcurrent trip (F002) can occur.

This increase is in addition to P078, but the total is

limited to 250%.

© Siemens plc 1999

Понравилась статья? Поделить с друзьями:
  • Microlife ингалятор neb 200 компрессорный инструкция
  • Microlife neb 50 инструкция как пользоваться
  • Microlife mt 3001 градусник инструкция
  • Mesh nebulizer ym 252 инструкция на русском
  • Metabo hww 3500 25 inox инструкция