Raytek mi3 инструкция на русском

RayTek MI3 Operating Instructions Manual

  1. Manuals
  2. Brands
  3. RayTek Manuals
  4. Accessories
  5. MI3
  6. Operating instructions manual

  • Contents

  • Table of Contents

  • Bookmarks

Quick Links

MI3

Miniature Infrared Sensor

Operating Instructions

Rev. G Nov/2015

55201

loading

Related Manuals for RayTek MI3

Summary of Contents for RayTek MI3

  • Page 1: Operating Instructions

    Miniature Infrared Sensor Operating Instructions Rev. G Nov/2015 55201…

  • Page 3
    Thank you for purchasing this Raytek product. Register today at www.raytek.com/register to receive the latest updates, enhancements and software upgrades! © Raytek Corporation. Raytek and the Raytek Logo are registered trademarks of Raytek Corporation. All rights reserved. Specifications subject to change without notice.
  • Page 4
    ARRANTY The manufacturer warrants this product to be free from defects in material and workmanship under normal use and service for the period of two years from date of purchase, except as hereinafter provided. This warranty extends only to the original purchaser (a purchase from the manufacturer or a licensed distributor of the manufacturer is an original purchase).
  • Page 5: Table Of Contents

    Content CONTENT …………………………..5 1 SAFETY INSTRUCTIONS ……………………..10 2 DESCRIPTION …………………………13 2.1 O ··························································································································· 14 VERVIEW OXES 3 TECHNICAL DATA ……………………….15 3.1 M ················································································································· 15 EASUREMENT PECIFICATION 3.1.1 Sensing Heads ……………………….. 15 3.1.2 Comm Box ……………………….16 3.1.2.1 Comm Box (metal) ………………………..

  • Page 6
    5.4 W ··································································································································· 29 IRING ERMINAL 5.4.1 Comm Box (metal) ……………………..29 5.4.2 Comm Box (DIN 3TE) ……………………30 5.4.3 Comm Box (DIN 4 TE) ……………………31 5.4.4 Comm Box (DIN 6 TE) ……………………32 5.4.5 EMI Resistance for Comm Box (DIN) ………………..35 5.5 P ····························································································································…
  • Page 7
    9.2.4 Mains Supply ……………………….61 9.2.5 Ex Power Supply 115MI3ACIS / 230MI3ACIS …………….63 10 ACCESSORIES ………………………… 64 10.1 A ) ···················································································································· 64 CCESSORIES ALL MODELS 10.1.1 Multi-Channel Box ……………………… 64 10.1.2 USB/RS485 Adapter ……………………. 67 10.2 A (LT, G5 H ) ·················································································································…
  • Page 8: Data Logging

    ··················································································································································· 103 IRING 16.1.1 Comm Box (metal) …………………….. 103 16.1.2 Comm Box (DIN) ……………………… 103 16.2 A ··········································································································································· 104 DDRESSING 16.2.1 MI3 …………………………104 16.2.2 PC Network Adapter ……………………105 16.3 ASCII P ··························································································································· 106 ROGRAMMING 16.4 ·········································································································································· 107 HTTP ERVER 16.4.1 Data Logging ……………………..

  • Page 9: Lock Mode

    18.7.4 Factory default values ……………………121 18.7.5 Lock Mode ……………………….121 18.7.6 Mode Setting for the Digital Input FTC3 ………………121 18.7.7 Ambient Background Temperature Compensation …………….. 121 18.8 C ······································································································································· 121 OMMAND 18.8.1 ASCII Commands for Ethernet and Profinet ……………… 127 19 APPENDIX …………………………

  • Page 10: Safety Instructions

    Safety Instructions 1 Safety Instructions This document contains important information, which should be kept at all times with the instrument during its operational life. Other users of this instrument should be given these instructions with the instrument. Eventual updates to this information must be added to the original document. The instrument should only be operated by trained personnel in accordance with these instructions and local safety regulations.

  • Page 11
    Safety Instructions Safety Symbols AC (Alternating Current) DC (Direct Current) Risk of danger. Important information. See manual. Hazardous voltage. Risk of electrical shock. Helpful information regarding the optimal use of the instrument. Earth ground Protective ground Fuse Normally-open (NO) relay Normally-closed (NC) relay Switch or relay contact DC power supply…
  • Page 12
    Safety Instructions The instrument can be equipped with a Class 2 laser. Class 2 lasers shine only within the visible spectrum at an intensity of 1 mW. Looking directly into the laser beam can produce a slight, temporary blinding effect, but does not result in physical injury or damage to the eyes, even when the beam is magnified by optical aids.
  • Page 13: Description

    Description 2 Description The MI3 sensor series is the next generation of the well-established “MI class” sensor platform. It will be capable of covering a broad range of applications. The MI3 sensor series introduces various network communications, an externally accessible user interface, improved temperature measurement specifications and capabilities at an economic price.

  • Page 14: Overview Comm Boxe

    Description 2.1 Overview Comm Boxes MI3COMM MI3MCOMMN MI3MCOMM MI3MCOMM… metal box DIN 3TE DIN 4TE DIN 6TE Part number MI3COMM… MI3MCOMMN MI3MCOMM MI3MCOMM… Spectral Heads LT, G5, 1M, 2M LT, G5, 1M, 2M LT, G5, 1M, 2M LT, G5, 1M, 2M Head Support by firmware 8 heads…

  • Page 15: Technical Data

    Technical Data 3 Technical Data 3.1 Measurement Specification 3.1.1 Sensing Heads Temperature Range LTS02, LTS10, LTH10 -40 to 600°C (-40 to 1112°F) LTS20, LTF, LTH20 0 to 1000°C (32 to 1832°F) 250 to 1650°C (482 to 3002°F) 250 to 1400°C (482 to 2552°F) 500 to 1800°C (932 to 3272°F) Spectral Response 8 to 14 µm…

  • Page 16: Comm Box

    Technical Data 3.1.2 Comm Box Accuracy mA/V output ± 1°C (corresponds to ± 0.015 mA for the current output at 0-20 mA or ± 0.015 mA for the current output at 4-20 mA or 4 mV for the voltage output at 0-5 V or 8 mV for the voltage output at 0-10 V) TC output ±…

  • Page 17: O Ptical C Harts

    Technical Data 3.2 Optical Charts Figure 1: Spot Size Charts Rev. G Nov/2015…

  • Page 18: E Lectrical S Pecification

    Technical Data 3.3 Electrical Specification For an overview to the capabilities of the communication boxes, see section 2.1 Overview Comm Boxes, page 14. 3.3.1 Comm Box, all models Voltage Supply 8 to 32 VDC Power Consumption max. 6 W Alarm Output 1 potential-free relay output, 48 V / 300 mA Relay with wear-free contacts (solid state relay) for target temperature or head ambient temperature, electrically isolated from power supply…

  • Page 19: E Nvironmental S Pecification

    Technical Data 3.4 Environmental Specification 3.4.1 Sensing Head Ambient Temperature LT, G5 -10 to 120°C (14 to 248°F) -10 to 180°C (14 to 356°F) 1M, 2M 0 to 120°C (32 to 248°F) Laser (1M, 2M) automatic switch off at 65°C (149°F) Storage Temperature -20 to 180°C (-4 to 356°F) all other models…

  • Page 20: Comm Box (Din)

    Technical Data Electromagnetic Compatibility Applies to use in Korea only. Class A Equipment (Industrial Broadcasting & Communication Equipment) This product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and is not to be used in homes.

  • Page 21: D Imensions

    Technical Data 3.5 Dimensions 3.5.1 Sensing Head LT, G5 Standard cable length 1 m (3 ft.) Ø 5 mm (0.2 in) Figure 2: Dimensions of LT, G5 Sensing Heads 3.5.2 Sensing Head LTH Figure 3: Dimensions of LTH Sensing Head with separated Electronics 3.5.3 Sensing Head 1M, 2M Standard cable length 1 m (3 ft)

  • Page 22: Scope Of Delivery

    Technical Data Figure 5: Dimensions of Communication Box 3.5.5 Comm Box (DIN) The boxes come in a standard DIN rail size in accordance to EN 50022-35×7.5 (DIN 43880). Width MI3MCOMMN MI3MCOMM MI3MCOMM… DIN 3TE: DIN 4TE: DIN 6TE: 53.6 mm (2.1 in) 71.6 mm (2.8 in) 107.6 mm (4.2 in) Figure 6: Dimensions for Comm Boxes (DIN)

  • Page 23: Comm Box

    Technical Data 3.6.2 Comm Box  Communication box  for Comm Box (DIN) only — XXXMI3MCOMMSET: ferrite cores (4 pcs), shield tapes (4 pcs)  Software DVD  Quickstart guide Rev. G Nov/2015…

  • Page 24: Basics

    Basics 4 Basics 4.1 Measurement of Infrared Temperature All surfaces emit infrared radiation. The intensity of this infrared radiation changes according to the temperature of the object. Depending on the material and surface properties, the emitted radiation lies in a wavelength spectrum of approximately 1 to 20 µm. The intensity of the infrared radiation (heat radiation) is dependent on the material.

  • Page 25
    Comm Box, or power. Please note that:  The metal housings of the sensing head and the MI3 communication box are electrically connected to the shield of the head cable.  All inputs and outputs (except the alarm output and the outputs of the Comm Box (DIN 6TE, analog)) use the same ground and are electrically connected to the power supply.
  • Page 26: Installation

    Installation 5 Installation 5.1 Positioning Sensor location depends on the application. Before deciding on a location, you need to be aware of the ambient temperature of the location, the atmospheric quality of the location, and the possible electromagnetic interference in that location. If you plan to use air purging, you need to have an air connection available.

  • Page 27: Comm Box (Din)

    Installation Comm Box Power supply, (RAYMI3COMM) 2 analog Head 1 outputs, (RAYMI3…) 3 inputs Fieldbus Figure 11: Single Head Configuration with Comm Box To increase the number of supported sensing heads, you can use a dedicated accessory, see section 10.1.1 Multi-Channel Box, page 64.

  • Page 28: Comm Box (Metal)

    The total sensing head cable length for all networked sensing heads must not exceed 30 m (98 ft) for MI3 and 2×30 m (2×98 ft) for MI3M! Do not add a third party cable to extend the length of the sensing head cable! 5.3.1 Comm Box (metal)

  • Page 29: Comm Box (Din)

    Installation 5.3.2 Comm Box (DIN) The wiring of the sensing head cable is color coded, see section 5.4.3 Comm Box (DIN 4 TE), page 31. 5.4 Wiring, Terminal You need to connect the power supply and possibly the signal input/output wires. Use only cable with outside diameter from 4 to 6 mm (0.16 to 0.24 in), wire size: 0.14 to 0.75 mm²…

  • Page 30: Comm Box (Din 3Te)

    Installation 5.4.2 Comm Box (DIN 3TE) Sensing Heads USB Connector, Mini-B Figure 15: Terminal Wiring for the Comm Box DIN 3TE Rev. G Nov/2015…

  • Page 31: Comm Box (Din 4 Te)

    Installation 5.4.3 Comm Box (DIN 4 TE) Sensing Heads Termination USB Connector, Mini-B Figure 16: Terminal Wiring for the Comm Box DIN 4 TE Rev. G Nov/2015…

  • Page 32: Comm Box (Din 6 Te)

    Installation 5.4.4 Comm Box (DIN 6 TE) Sensing Heads Wiring Profibus or Modbus USB Connector, Mini-B Figure 17: Terminal Wiring for the Comm Box DIN 6 TE for Profibus and Modbus Rev. G Nov/2015…

  • Page 33
    Installation Sensing Heads USB Connector, Mini-B RJ45 connector Profinet or Ethernet Figure 18: Terminal Wiring for the Comm Box DIN 6 TE for Profinet and Modbus Rev. G Nov/2015…
  • Page 34
    Installation Sensing Heads see section Analog Outputs OUT1 — OUT4, page 41. Analog Outputs USB Connector, Mini-B Figure 19: Terminal Wiring for the Comm Box DIN 6 TE, analog Rev. G Nov/2015…
  • Page 35: Emi Resistance For Comm Box (Din)

    Installation 5.4.5 EMI Resistance for Comm Box (DIN) To maintain EMI compliance to CE standards the attached Ferrite cores need to be placed on all wires! Make sure that the cable shields will be connected to the terminal pin <Shield>! self-adhesive shield tape to wrap round the cable Shield wire connected to…

  • Page 36: Power On Procedure

    Installation 5.5 Power On Procedure To power the system, the following procedures are required. 5.5.1 One Head System Disconnect power to the box. Connect the wires for the head to the box terminal. Power the box. The box now assigns address 1 to the head. 5.5.2 Multiple Heads –…

  • Page 37
    Installation 5.6 USB The USB interface comes with each box (USB connector, Mini-B). Connect a single unit to a USB computer port by using an appropriate USB cable. USB connector, type Mini-B The computer’s USB port Figure 21: USB Connection via the Comm Box (metal) The computer’s USB port Figure 22: USB Connection via the Comm Box (DIN Rail) Rev.
  • Page 38
    Installation Consider the following sequence for the installation: Disconnect/reconnect the USB interface cable to the computer! Ignore the Windows Wizard <Found New Hardware>! Navigate manually to the dedicated USB driver <RaytekMIcomport.inf> on the support media and execute it. It is strongly recommended to check the correct driver installation under the Windows Operating System <Start>…
  • Page 39: F Ieldbus

    Installation 5.7 Fieldbus A simultaneous communication via USB and fieldbus is not allowed! 5.7.1 Addressing Each slave in the network must have a unique address and must run at the same baud rate! For setting the fieldbus configurations through the control panel, see section 8.3 <Box Setup>…

  • Page 40: Outputs

    Outputs 6 Outputs For the outputs the following groupings (setups) are possible: Output Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 OUT1 head temperature head temperature object temperature object temperature  OUT2 object temperature object temperature object temperature object temperature head temperature object temperature…

  • Page 41: A Nalog O Utputs Out1 — Out4

    Outputs 6.3 Analog Outputs OUT1 — OUT4 Comm Box: DIN 6TE, analog (4 channels) Source: object temperature / head ambient temperature Signal: 0/4 to 20 mA or 0 to 5/10 V Terminal: , GND Each signal output can be configured as either current or voltage output, whereby each sensing head can be assigned to each output.

  • Page 42: T Hermocouple O Utput Tc

    Outputs 6.5 Thermocouple Output TC Comm Box: metal Source: object temperature Signal: TCJ, TCK, TCR, or TCS Terminal: TC, GND This output can be configured as thermocouple output type J, K, R, or S. For that output, you must install a dedicated compensation cable. The output impedance is 20 Ω. The output is short circuit resistant.

  • Page 43: Inputs

    Inputs 7 Inputs Three external inputs FTC1, FTC2, and FTC3 are used for the external control of the unit. You cannot enable the input functions through the control panel! FTC1 FTC2 FTC3 Emissivity (analog control) Emissivity (digital control) Ambient Background Temperature Compensation Trigger/Hold Function Laser Switching Table 2: Overview for FTC Inputs…

  • Page 44: E Missivity ( Digital )

    Inputs + 5 VDC “product 1” R1 = 200 Ω 4.0 V (ε=0.9) To the FTC input R2 = 500 Ω of the box 1.5 V (ε=0.4) “product 2” R3 = 300 Ω Figure 25: Adjustment of Emissivity at FTC Input (Example) 7.2 Emissivity (digital) Function: emissivity (digital control)

  • Page 45
    Inputs The sensor is capable of improving the accuracy of target temperature measurements by taking into account the ambient or background temperature. This feature is useful when the target emissivity is below 1.0 and the background temperature is significantly hotter than the target temperature. For instance, the higher temperature of a furnace wall could lead to hotter temperatures being measured especially for low emissivity targets.
  • Page 46: Trigger/Hold

    Inputs 7.4 Trigger/Hold Function: Trigger/Hold Signal: digital low/high Terminal: FTC3, GND The FTC3 input can be used as an external trigger functioning as “Trigger” or “Hold”. All sensing heads are effected by the FTC3 input at the same time. Figure 28: Wiring of FTC3 as Trigger/Hold Trigger: A logical low signal at the input FTC3 will reset the peak or valley hold function.

  • Page 47: L Aser S Witching

    Inputs object temperature Temp output temperature Trigger Time Figure 30: FTC3 for Holding the Output Temperature 7.5 Laser Switching Function: Laser switching on/off Signal: digital low/high Terminal: FTC3, GND The FTC3 input can also be used as an external trigger to switch the laser (only available for selected sensing head models).

  • Page 48: Control Panel

    Operation 8 Operation Once you have the sensor positioned and connected properly, the system is ready for continuous operation. The control panel is accessible on the outside of the box. Push buttons provide positive tactile feedback to the user. User interface includes a backlit LCD, displaying sensor set up parameters and temperature outputs.

  • Page 49
    Operation The head number is shown only if two or more sensing heads are connected to the communication box. Symbol/Message Meaning Remark Average Peak Hold Valley Hold HOLD Trigger set to HOLD function Advanced Peak Hold Software controlled APHA Advanced Peak Hold with Averaging Software controlled Advanced Valley Hold Software controlled…
  • Page 50: Head> Page

    Operation #1 (Head) #2 (Head) BOX SETUP BOX INFO Serial No. Tambient Relay Mode Rev. Tbox Emissivity OUT1 Mode* Transmiss. OUT1 Source* Laser* OUT1 Value* Average OUT1 low temp.* Peak Hold OUT1 high temp.* Val. Hold OUT2 Mode* Trigger OUT2 Source* Alarm Mode OUT2 Value* Set Point…

  • Page 51
    Operation <Laser> handles the laser in the following modes: <off> switches the laser off <flash> forces the laser to blink at 8 Hz <on> switches the laser permanently on <external> switches the laser via external input FTC3 An activated laser will be switched off automatically after 10 minutes. The laser is available for 1M and 2M heads only.
  • Page 52
    Operation <OUT1 Mode> defines the mode for the analog output: <TCJ>, <TCK>, <TCR>, <TCS> <0-5V> <0-10V> <disable> output goes to high-resistance <OUT1 Source> assigns the selected head to the analog output: <#1>, <#2>, …, <Head > <OUT1 Value> defines the basis for the output value: <Tobject>: object temperature to be output <Tambient>: head ambient temperature to be output <OUT1 low temp.>…
  • Page 53: Box Info> Page

    Operation <Temperature Unit> the temperature unit can be set to °C or °F. Note that this setting influences the digital interfaces like RS485 for both object and head ambient temperature. <Key Enter Lock> the box has a user interface lockout feature that keeps the box from being accidentally changed from the control panel (locked by default under DataTemp Multidrop Software and Profinet communications).

  • Page 54: Peak Hold

    Operation Attention: The disadvantage of averaging is the time delay of the output signal. If the temperature jumps at the input (hot object), the output signal reaches only 90% magnitude of the actual object temperature after the defined average time. 8.5.2 Peak Hold The output signal follows the object temperature until a maximum is reached.

  • Page 55: Advanced Peak Hold

    Operation Temp output temperature object temperature hold time hold time Time Figure 37: Valley Hold A defined hold time of 999 s (symbol “∞” in the display) will put the device into continuous valley detection mode. A low level input (GND) at external input FTC3 will promptly interrupt the hold time and will start the minimum detection again.

  • Page 56: Advanced Valley Hold

    Operation 8.5.5 Advanced Valley Hold This function works similar to the advanced peak hold function, except that it will search the signal for a local minimum. 8.5.6 Advanced Peak Hold with Averaging The output signal delivered by the advanced peak hold functions tends to jump up and down. This is due to the fact, that only maximum points of the otherwise homogenous trace will be shown.

  • Page 57: Options

    Options 9 Options Options are items that are factory installed and must be specified at time of order. The following are available:  Longer head cables in the lengths: 3 m / 9.8 ft. (…CB3) 8 m / 26 ft. (…CB8) 15 m / 49 ft.

  • Page 58: Avoidance Of Condensation

    Options 9.1.1 Avoidance of Condensation If environmental conditions makes water cooling necessary, it is strictly recommended to check whether condensation will be a real problem or not. Water cooling also causes a cooling of the air in the inner part of the sensor, thereby decreasing the capability of the air to hold water. The relative humidity increases and can reach 100% very quickly.

  • Page 59: I Ntrinsic S Afety

    9.2 Intrinsic Safety 9.2.1 Sensing Heads The sensing heads for the MI3, MI3xxLTH, and MI3100 series are available as intrinsic safety rated sensing heads (…IS) intended for use in explosive atmospheres. The sensing heads xxMI3xxxISx and xxxMI3100xxxISx follow the ATEX / IECEx certification in…

  • Page 60: Installation

    IECEx Certificate of Conformity for Power Supply, page 142. 9.2.3 Installation The basic installation of sensing heads and the Ex Power Supply is shown in the following figure. MI3 Communication Box Ex Power Supply Explosion critical area 100 to 127 VAC 200 to 240 VAC Total sensing head cable length: max.

  • Page 61: Mains Supply

    Options The standard data cable length to the communication box is 5 m (16 ft). In response to the interference in the environment the length of the cable may be up to 30 m (98 ft). Use only shielded cable with low capacitance about 100 pF/m (33pF/ft). The following illustration shows the external wiring of the Ex Power Supply with the sensing heads, the communication box and the mains supply.

  • Page 62
    Options  Before installation select the correct local mains voltage via the switch on the circuit board of the Ex Power Supply, see Figure 45.  A ground wire must be connected to the (PE — protective earth) terminal on the circuit board of the Ex Power Supply.
  • Page 63: Ex Power Supply 115Mi3Acis / 230Mi3Acis

    Options 9.2.5 Ex Power Supply 115MI3ACIS / 230MI3ACIS The two variants of the Ex Power Supply without voltage selection switch are hard wired to the mains voltage. These devices are considered as nonsparking and may be installed in a non-hazardous area or in a hazardous area Zone 2 EPL Gc to supply power to intrinsically safe sensing heads.

  • Page 64: Accessories

    Accessories 10 Accessories A full range of accessories for various applications and industrial environments are available. Accessories include items that may be ordered at any time and added on-site. 10.1 Accessories (all models)  Multi-Channel Box (XXXMI3CONNBOX)  USB/RS485 Adapter for boxes with RS485 interface (XXXUSB485) 10.1.1 Multi-Channel Box The Multi-Channel Box can be used for all communication boxes.

  • Page 65
    Accessories Figure 48: Dimensions to Comm Box (MI3COMM or MI3MCOMM) Figure 49: Wiring Diagram for 8 Heads Rev. G Nov/2015…
  • Page 66
    Correct position of the shield before mounting Figure 50: Correct Mounting of the Cable Shield The total sensing head cable length for all networked sensing heads must not exceed 30 m/98 ft (for MI3) and 2×30 m/2×98 ft (for MI3M)! Rev. G Nov/2015…
  • Page 67: Usb/Rs485 Adapter

    Accessories 10.1.2 USB/RS485 Adapter The USB/RS485 adapter is self-powering via the USB connection. Figure 51: USB/RS485 Adapter (XXXUSB485) Termination Figure 52: Wiring the RS485 Interface of the Box (left) and USB/RS485 Adapter (right) Rev. G Nov/2015…

  • Page 68: A Ccessories (Lt, G5 H Eads )

    Accessories 10.2 Accessories (LT, G5 Heads)  Adjustable Mounting Bracket (XXXMIACAB)  Fixed Mounting Bracket (XXXMIACFB)  Sensing head mounting nut (XXXMIACMN)  Air Purge Jacket (XXXMIACAJ)  Air Cooling System with 0.8 m (2.6 ft.) air hose (XXXMIACCJ) or with 2.8 m (9.2 ft.) air hose (XXXMIACCJ1) …

  • Page 69: Adjustable Mounting Bracket

    Accessories 10.2.1 Adjustable Mounting Bracket Figure 54: Adjustable Mounting Bracket (XXXMIACAB) Rev. G Nov/2015…

  • Page 70: Fixed Mounting Bracket

    Accessories 10.2.2 Fixed Mounting Bracket Figure 55: Fixed Mounting Bracket (XXXMIACFB) 10.2.3 Air Purge Jacket For LTH sensing heads, the Air Purge Jacket is only available pre-mounted from the factory (XXXMIACAJI)! The air purge jacket is used to keep dust, moisture, airborne particles, and vapors away from the sensing head.

  • Page 71: Air Cooling System

    Accessories Fitting to M5 inner thread Hose with inner diameter of 3 mm (0.12 in), outside 5 mm (0.2 in) Figure 56: Air Purge Jacket (XXXMIACAJ) Figure 57: Mounting the Air Purge Jacket Remove the sensor ① and cable from the communication box by disconnecting the wires from the terminal.

  • Page 72
    Accessories max. ambient 200°C (392°F) max. ambient 50°C (122°F) Air Hose Sensing Head Cable Adapter Air cooling (max. 35°C / 95°F) Figure 58: Air Cooling System (XXXMIACCJ) T-Adapter Hose to sensing head Cable to box Fitting free for air connection Hose: inner Ø: 9 mm (0.35 in) outer Ø: 12 mm (0.47 in)
  • Page 73
    Accessories Air Flow: 60 l / min (2.1 cubic feet per minute) 50 l / min (1.8 cfm) 40 l / min (1.4 cfm) Hose Length Figure 60: Maximum Ambient Temperature is dependent on Air Flow and Hose Length Note: “Hose Length“ is the length of the hose exposed to high ambient temperature (not the overall length of the hose).
  • Page 74
    Accessories Figure 61: Air Cooling System: Purging Jacket and T-Adapter The Air Cooling System consists of: ① sensing head ② inner plastic fitting (air purge jacket) ③ front part of the air-purging jacket ④ back part of the air-purging jacket ⑤…
  • Page 75: Right Angle Mirror

    Accessories Hose: inner Ø: 9 mm (0.35 in) outer Ø: 12 mm (0.47 in) Figure 62: Dimensions of Air Cooling System 10.2.5 Right Angle Mirror The right angle mirror comes in two different versions: XXXMIACRAJ right angle mirror as accessory for air purge jacket or air cooling system XXXMIACRAJ1 right angle mirror with integrated air purge (not available for LTH sensing heads) Figure 63: Right Angle Mirror XXXMIACRAJ (left),…

  • Page 76: Protective Windows

    Accessories The IR beam length within the right angle mirror is 18 mm (0.7 in.) which needs to be considered for spot size calculations. 10.2.6 Protective Windows Protective windows can be used to protect the sensing head from dust and other contamination. The protective window can be directly screwed onto the sensing head.

  • Page 77
    Accessories For correct temperature readings, the transmission of the close focus lens must be set via the control panel in the communication box. See section 8.2 <Head> Page, page 50! Make sure the measuring head and the close focus lens are at the same temperature! Figure 66: Sensing Head with Close Focus Lens (XXXMI3ACCFL) Figure 67: Spot Size Charts for Close Focus Lens Rev.
  • Page 78: A Ccessories (1M, 2M H Eads )

    Accessories 10.3 Accessories (1M, 2M Heads)  Fixed Mounting Bracket (XXXMI3100FB)  Adjustable Mounting Bracket (XXXMI3100ADJB)  Isolation Kit (MI3100ISOKIT)  Air Purge Collar (XXXMI3100AP)  Right Angle Mirror (XXXMI3100RAM)  Protective Window (XXXMI3100PW) Air Purge Collar Sensing Head Mounting Nut Fixed Mounting Bracket Protective Window…

  • Page 79: Fixed Mounting Bracket

    Accessories 10.3.1 Fixed Mounting Bracket Figure 69: Dimensions of Fixed Mounting Bracket (XXXMI3100FB) Rev. G Nov/2015…

  • Page 80: Adjustable Mounting Bracket

    Accessories 10.3.2 Adjustable Mounting Bracket Figure 70: Dimensions of Adjustable Mounting Bracket (XXXMI3100ADJB) Rev. G Nov/2015…

  • Page 81: Isolation Kit

    Accessories 10.3.3 Isolation Kit The isolation kit (MI3100ISOKIT) can be used likewise for the fixed mounting bracket (XXXMI3100FB) and the adjustable mounting bracket (XXXMI3100ADJB). Two non-conductive rings insulate the sensing head (1M, 2M) electrically from the mounting bracket. The isolation kit is used to implement installations with one earth grounded point only, see section 4.5 Electrical Interference, page 24.

  • Page 82: Right Angle Mirror

    Accessories 10.3.5 Right Angle Mirror The Right Angle Mirror is used to turn the field of view by 90° against the sensor axis. It is recommended when space limitations or excessive radiation do not allow for direct alignment of the sensor to the target.

  • Page 83: Protective Window

    Accessories 10.3.6 Protective Window Protective windows can be used to protect the sensing head from dust and other contamination. The protective window can be directly screwed onto the sensing head. The following table provides an overview of the available windows. Order number Material Transmission…

  • Page 84: Maintenance

    Maintenance 11 Maintenance Our sales representatives are always at your disposal for questions regarding application assistance, calibration, repair, and solutions to specific problems. Please contact your local sales representative, if you need assistance. In many cases, problems can be solved over the telephone. If you need to return equipment for servicing, calibration, or repair, please call our Service Department for authorization prior to return.

  • Page 85: Cleaning The Lens

    Maintenance Symptom Temperature over range > 1200°C > 1372°C > 1768°C > 1768°C (2192°F) (2502°F) (3214°F) (3214°F) Temperature under range -210°C -210°C -50°C -50°C (-346°F) (-346°F) (-58°F) (-58°F) Head ambient temperature out of range > 1200°C > 1372°C > 1768°C >…

  • Page 86: S Ensing H Ead E Xchange

    Maintenance Do not use any ammonia or any cleaners containing ammonia to clean the lens. This may result in permanent damage to the lens’ surface! 11.4 Sensing Head Exchange To exchange a sensing head, the following procedure is required: Disconnect power to the box. Disconnect all head wires from the box terminal.

  • Page 87: Software Features

    DataTemp Multidrop Software 12 DataTemp Multidrop Software 12.1 Software Features DataTemp Multidrop DTMD provides sensor setup, remote monitoring, and simple data logging for analysis or to meet quality record-keeping requirements. Additional features configurable with DTMD Software:  Eight-position “recipe” table that can be easily interfaced to an external control system …

  • Page 88: Rs485

    RS485 13 RS485 The RS485 serial interface is used for long distances up to 1200 m (4000 ft) or for networked communication boxes. To connect the RS485 interface to a standard computer you should use a dedicated adapter, see section 10.1.2 USB/RS485 Adapter, page 67.

  • Page 89: Profibus

    Profibus 14 Profibus Profibus DP-V0 defines a cyclical data exchange between a master (e.g. a PLC) and a slave (MI3 sensor). At start-up first an array of parameters (Profibus specific data) is sent from the master to the slave, followed by an array with the configuration (sensor specific presetting’s taken from the GSD file) also sent from the master to the slave.

  • Page 90
    Profibus A Sub-D female connector or a M12 female connector can be ordered separately for Profibus. The M12 connector is B-coded. Please note the Sub-D connector is not IP rated! Figure 77: Sub-D Connector (…P2) and M12 Connector (…P1) Profibus Sub-D Pin M12 Pin (cable color)
  • Page 91: Comm Box (Din)

    Profibus 14.1.2 Comm Box (DIN) Termination Indicator Profibus n.a. Shield (negative signal) (not supported while termination “on”) (positive signal) (not supported while termination “on”) (negative signal) (positive signal) Shield n.a. , yellow ON: data-exchange Figure 80: Terminal for Comm Box (DIN 6TE) Rev.

  • Page 92: P Rogramming

    Profibus 14.2 Programming 14.2.1 Parameter Data Byte Address Description Format Range without offset 0 to 6 DP-V1 Status1 DP-V1 Status2 DP-V1 Status3 Temp. unit 67=°C, 70=°F 67 or 70 Reserved 12, 13 Bottom temp. of output 1 in 0.1°C /°F 14, 15 Top temp.

  • Page 93: Input Data

    Profibus Byte Address Description Format Range without offset Laser Head_1 0 = off, 1 = on, 0 or 1 2 = flashing 60…63 reserved, for future consideration 64 … Head_2 84 … Head_3 104 … Head_4 124 … Head_5 144 … Head_6 164 ……

  • Page 94: Output Data

    Profibus 14.2.3 Output Data The device does not have output data in the original meaning. But the output data may be used to change the initialization of the device (which was set once at start-up) when the bus is in data exchange mode.

  • Page 95
     up to which index the user data is valid 11 (0x0B) box error code 12 … 22 (0x0C …16) last MI3-command which created an error as answer; ASCII code 23 (0x17) head_1 error code 24 (0x18)
  • Page 96
    Profibus Highest Last bad head Head 1 Head 8 error bits error bits Figure 82: Diagnose Data with Error “Cable Break at Head 1” Rev. G Nov/2015…
  • Page 97: Modbus

    Modbus 15 Modbus The Modbus protocol follows the master/slave model. One master controls one or more slaves. Typically, the master sends a request to a slave, which in turn sends a response. The request/response mechanism is called a transaction. Requests and responses are also referred to as messages. Specification: Version: Modbus serial line (RS485)

  • Page 98: Comm Box (Din)

    Modbus 15.1.2 Comm Box (DIN) Termination Indicators Modbus (output) Shield D0_2 (negative signal) (not supported while termination “on”) D1_2 (positive signal) (not supported while termination “on”) D0_1 (negative signal) D1_1 (positive signal) Shield (output) n.a. , yellow Communication , red Error Figure 84: Terminal for Comm Box (DIN 6TE) Rev.

  • Page 99: P Rogramming

    Comm Box. Items (registers, discretes or coils) are addressed starting at zero. Therefore items numbered 1-10000 are addressed as 0-9999. Start Size Modbus Access Data Content Values MI3[M] address [bits] Type command input register short error code for last…

  • Page 100
    Modbus Start Size Modbus Access Data Content Values MI3[M] address [bits] Type command discretes input bit field Get connected heads bit 0: head 1 .. bit 7: head 8 bit high: head connected bit low: head disconnected discretes input bit field Get registered heads bit 0: head 1 ..
  • Page 101: Head Parameter

    Modbus 15.2.2.2 Head Parameter <n> … head number, depending on the registered heads Starting Size Modbus Data Content Values MI3[M] address [bits] Access Type command <n>005 discretes bit field Head Status bit0: Temperature Unit input (0: deg. C, 1: deg. F)

  • Page 102
    Modbus Starting Size Modbus Data Content Values MI3[M] address [bits] Access Type command <n>220 holding char Emissivity Source I: internal command register E: ext. input (0V .. 5V) D: digital selected FTC1-3 <n>230 holding float Presel. Emissivity 0.1 .. 1.1 register <n>240…
  • Page 103: Ethernet

    (port 80) capability supporting up to 8 sensing heads Connection: M12 or RJ45 electrically isolated An opened Ethernet port will be closed automatically by the MI3 communication box if there is no data traffic within the time given by the <TTI> command! 16.1 Wiring 16.1.1 Comm Box (metal) The connector on the box side is an M12 plug-in connector, 4 pin D-coded, suited for industrial Ethernet with IP67 protection rate with a screw retention feature.

  • Page 104: A Ddressing

    The factory default IP address for the linescanner is 192.168.42.130. The IP address for the MI3 is not free of choice: It has to be unique in the network meaning that no other device in the network including the PC network adapter may run at the same IP address. The IP address for the MI3 can be set directly via the control panel.

  • Page 105: Pc Network Adapter

    103. The MI3 subnet address must be 193.221.142 as well. The host address of the MI3 must be in the range from 1 to 254 with the exception of 103 which is already used for the PC.

  • Page 106: Ascii P Rogramming

    4. Activate the radio button <Use the following IP address> and make the following settings: IP address: 192.168.42.x where x is an address between 0 and 255 except 130 which is already used by the MI3 by factory default Subnet mask: 255.255.255.0 Default gateway: {empty} 5.

  • Page 107: Http S Erver

    Ethernet 16.4 http Server The MI3 Comm Box with Ethernet provides a built-in http server for one or more client computers based on the http protocol within an Intranet. For getting/setting the network address through the control panel of the Comm Box, see section 8.3 <Box Setup>…

  • Page 108
    1 The data logging function is password protectable to ensure data consistency while having multiple clients connected to the MI3 http server. A valid password accepts digits only! The factory presetting is 1234.
  • Page 109: Profinet

    Profinet 17 Profinet The Profinet fieldbus MI3 communication box (called fieldbus communicator) maps the object and internal temperature of all pyrometer modules on Profinet IO. In the initialization phase, the fieldbus communicator determines the physical structure of the node and creates a local process image with all pyrometers.

  • Page 110: P Rogramming

    Pyrometer modules is based on the device’s GSD file. 17.2.1.1 GSD File Under Profinet IO, the features of the devices are described by the manufacturer in form of a GSD file and made available to the user. The GSD file for the MI3 IO device: GSDML-V2.25-Raytek-MI3-xxxxxxxx 17.2.1.2 Configuration The I/O device is configured in accordance with the physical arrangement of the node (slot oriented).

  • Page 111: Parameters Of The Fieldbus Communicator

    Profinet 17.2.2.1 Parameters of the Fieldbus Communicator The parameters of the fieldbus communicator are used to set the overall settings of the Profinet IO node. Some of the setting are used in the modules as default settings and can be optionally overwritten within the module configuration.

  • Page 112
    Profinet Figure 90: Parameters of the Fieldbus Communicator (exemplary for a STEP7 environment) Rev. G Nov/2015…
  • Page 113: Parameters Of The Pyrometer Module

    Profinet 17.2.2.2 Parameters of the Pyrometer Module Certain characteristics of same pyrometer modules can be parameterized during the configuration. Parameter Description Setting Pyrometer number Set the number of pyrometer 1..8 Emissivity * 1000 (0.9  900) 100 … 1100 Transmissivity * 1000 (1.0 …

  • Page 114: Input Data Structure

    Profinet 17.2.3 Input Data Structure 17.2.3.1 Input Data of Fieldbus Communicator The input data length is 5 Byte. Address without offset Length Format Value 1 Byte Bit0 Trigger state ( 0 – inactive, 1 – active) 4 Byte Real (Big Endian, Motorola) Internal temperature of the station 17.2.3.2 Input Data of Pyrometer Module The input data length of pyrometer module is 8 Byte.

  • Page 115
    Profinet indicator in APDU-Status is set by the communicator and a diagnostic alarm is additionally transmitted. As part of the diagnosis of the fieldbus communicator, bit 2 indicates a communication error to the pyrometer module. In this case, a diagnostic interrupt is triggered for the I/O controller. As part of the diagnosis of the pyrometer module, bit 6 indicates a communication error to the registered pyrometer module.
  • Page 116: Ascii Programming

    ASCII Programming 18 ASCII Programming This section explains the system’s ASCII communication protocols. A protocol is the set of commands that defines all possible communications with the sensor. The commands are described along with their associated ASCII command characters and related message format information. Use them when writing custom programs for your applications or when communicating with your sensor using a terminal program.

  • Page 117: A Ddressing

    ASCII Programming Setting a parameter (Poll Mode) The parameter will be stored into the device EEPROM. E=0.975<CR> “E“ is the parameter to be set “=“ is the command for “set a parameter“ “0.975“ is the value for the parameter <CR> (carriage return, 0Dh) is closing the request Remark: It is possible to close with <CR>…

  • Page 118: D Evice I Nformation

    ASCII Programming Examples requests the emissivity for sensing head at address 2 on the single box 2E=0.975 sets the emissivity to 0.975 for sensing head at address 2 on the single box !2E0.975 sensing head at address 2 confirms the emissivity setting on the single box 017E=0.5 Sets emissivity on head #1 on box 017 0171E=0.5…

  • Page 119: Emissivity Setting And Alarm Set Points

    ASCII Programming 18.5.3 Emissivity Setting and Alarm Set points The device allows three choices for the emissivity setting and two for the alarm output setting. Selection of the emissivity setting ES=I Emissivity set by a constant number according to the „E“ command ES=E Emissivity set by a voltage on FTC1 (analog input) ES=D…

  • Page 120: Device Control

    ASCII Programming Advanced Peak/Valley Hold with Averaging: C=250.0 threshold: 250°C AA=15.0 averaging time (90%): 15 s 18.6 Dynamic Data All temperature related information is calculated multiple times per second. To request the dynamic data, the following commands are available: target temperature internal temperature of the sensing head internal temperature of the electronics housing energy value of the infrared temperature…

  • Page 121: Command Set

    ASCII Programming KB=1 relay contacts permanently closed KB=2 relay contacts normally open KB=3 relay contacts normally closed XS=125.3 threshold setting to 125.3°C (if U=C is set) 18.7.4 Factory default values It is possible to reset the unit to the default values. factory default values will be set 18.7.5 Lock Mode The access to the unit is possible via serial interface (software) and via the direct user input (mode…

  • Page 122
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Ambient background °C/°F 23°C    temp. compensation float Advanced hold with 0 – 999.0 s 000.0s    average float Control ambient 0 –…
  • Page 123
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / External module 0 – no module  2 – 2 channels 4 – 4 channels (analog outputs) Presel. Emissivity  0 — 7 Pointer integer Emissivity Source …
  • Page 124
      control integer 1 = on 2 = Target norm. open depreciated for MI3 (use 3 = Target norm. closed the commands KB and 4 = Intern norm. open KH instead of) 5 = Intern norm. closed Relay alarm output …
  • Page 125
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Output 1 source O1O=v, v – float value O1O=1I   or nT, n – head number or nI if v = 60 – controlled by head 1(O1O=1T) Output 2 source O2O=v,…
  • Page 126
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Sensor initialization 1 after reset  0 if XI=0 Box Temperature float   (C/F) FTC3 trigger/hold  T = trigger, H = hold analog Output 1 mode XO1O XO1O=v 0 –…
  • Page 127
    ASCII Programming 18.8.1 ASCII Commands for Ethernet and Profinet Description Char Format P B S N Legal Values Factory default Head / IP address 192.xxx.xxx.xxx 192.168.42.130 2.19   (Ethernet) 0.0.0.0 (Profinet) Net Mask   255.255.255.0 255.255.255.0 2.19 (Ethernet) 0.0.0.0 (Profinet) Gateway…
  • Page 128: Appendix

    Appendix 19 Appendix 19.1 Determination of Emissivity Emissivity is a measure of an object’s ability to absorb and emit infrared energy. It can have a value between 0 and 1.0. For example a mirror has an emissivity of < 0.1, while the so-called “Blackbody“ reaches an emissivity value of 1.0.

  • Page 129
    Appendix ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0.2-0.4 Alloy A3003, Oxidized Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.02-0.1 0.02-0.1 Brass Polished 0.01-0.05 0.01-0.05 0.01-0.05 Burnished Oxidized Chromium 0.03-0.3 0.03-0.3 0.02-0.2…
  • Page 130
    Appendix Polished Sheet Molten 0.1-0.2 0.1-0.2 — Oxidized 0.7-0.9 0.7-0.9 0.7-0.9 Stainless 0.15-0.8 0.15-0.8 0.1-0.8 Tin (Unoxidized) 0.05 0.05 0.05 Titanium Polished 0.1-0.3 0.1-0.3 0.05-0.2 Oxidized 0.5-0.7 0.5-0.7 0.5-0.6 Tungsten 0.05-0.5 0.05-0.5 0.03 Polished 0.05-0.25 0.05-0.25 0.03-0.1 Zinc Oxidized Polished 0.03 0.03 0.02…
  • Page 131
    Appendix ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.95 Asphalt 0.95 0.95 Basalt Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum Ceramic 0.8-0.95 0.95 Clay 0.85-0.95 0.95 Concrete 0.95 Cloth 0.95 0.95 Glass Plate 0.98 0.85 “Gob”…
  • Page 132: C Onformity For S Ensing H Eads

    Appendix 19.3 ATEX Certificate of Conformity for Sensing Heads Rev. G Nov/2015…

  • Page 133
    Appendix Rev. G Nov/2015…
  • Page 134
    Appendix Rev. G Nov/2015…
  • Page 135
    Appendix 19.4 ATEX Certificate of Conformity for Ex Power Supply Rev. G Nov/2015…
  • Page 136
    Appendix Rev. G Nov/2015…
  • Page 137
    Appendix Rev. G Nov/2015…
  • Page 138: C Onformity For S Ensing H Eads

    Appendix 19.5 IECEx Certificate of Conformity for Sensing Heads Rev. G Nov/2015…

  • Page 139
    Appendix Rev. G Nov/2015…
  • Page 140
    Appendix Rev. G Nov/2015…
  • Page 141
    Appendix Rev. G Nov/2015…
  • Page 142: C Onformity For P Ower S Upply

    Appendix 19.6 IECEx Certificate of Conformity for Power Supply Rev. G Nov/2015…

  • Page 143
    Appendix Rev. G Nov/2015…
  • Page 144
    Appendix Rev. G Nov/2015…
  • Page 145
    Appendix Rev. G Nov/2015…
  • Page 146
    Notes 20 Notes Rev. G Nov/2015…

RAYMI31001MSF3 – датчик пирометра

Назначение серии пирометров Raytek MI3

Серия компактных термометров Raytek MI3  

На смену серии ИК стационарных термометров Thermalert MID, Raytek выпустил серию компактных термометров MI3, с расширенными возможностями и улучшенными техническими характеристиками. Преемственность старых моделей MID и новых MI3 сохранена. 
Наличие USB интерфейса в стандартном комплекте поставки, расширенный диапазон температуры и дополнительные функции обработки сигнала, позволяют встраивать датчики MI3 в системы автоматизации производственных процессов, использовать их в комплексном оборудовании.

Система MI3 состоит из датчика MI3 и блока электроники (защита IP65). Датчик и блок заказываются отдельно!

Особенности серии пирометров Raytek MI3

  • Подключение до 8 датчиков к одному блоку электроники
  • Концепция быстрого подключения Plug & Play
  • Работа до 120 °C /180 °C без охлаждения
  • Различные спектральные диапазоны
  • Расширенный температурный диапазон (для LT до 1000 °C)
  • Новая модель G5 до 1650 °C (5 мкм) для стекла
  • Пятно измерения от 0,5 мм (“ Close Focus“)
  • Модели “Fast» с временем отклика 10 мс
  • Промышленный кабель (полиуретан): устойчив к маслам, кислотам и щелочам
  • Лазерный прицел для 1M/2M  

Технические характеристики датчика RAY MI3 100 1M SF3

Общие данные

Диапазон измерения

500… 1800°C

Спектральный диапазон

1 μm

Оптическое разрешение1

100:1, фокус 2 мм@2200 мм

Точность2

±(0,5% измер±2°C) 4

Воспроизводимость

±(0,25% измер. ±1°C)

Температурный коэффициент

±0,05% /K от измер.

Время отклика6

130 мс

Коэффициент излучения

0,100 … 1,100

Коэффициент пропускания

0,100 … 1,100

Обработка сигнала

Расчет и фиксация макс., мин. и средних значений, настройка по времени до 998 с

Температура работы

0 … 120°C, laser — автоматическое выключение при 65°C

Температура хранения

-20 … 120°

Стандарт защиты

IP65

Защита от электромагнитных полей

EN 61326-1:2006

1 90% энергии

2 при окружающей температуре 23°C ± 5°C, ε = 1.0

3 что больше

4 ± 2°C при температуре < 20°C

5 для масштабируемого интервала < 500°C

6 90% 

Комплектация датчика Raytek MI3

  • Датчик пирометра;
  • Руководство по эксплуатации.

Дополнительная комплектация датчика Raytek MI3

  • Длина кабеля: 3 м, 8 м, 15 м, 30 м
  • Датчик для OEM систем, не требующий блока электроники
  • Регулируемый монтажный кронштейн
    XXXMIACAB для LT, G5 / XXXMI3100ADJB 1M, 2M
  • Корпус воздушного охлаждения (XXXMIACCJ: 0,8 м, XXXMIACCJ1: 2,8  

Технические параметры (спецификация) и комплект поставки товара могут быть изменены производителем без предварительного уведомления.

Информация носит справочный характер и не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации.

Документы, файлы, паспорт, инструкция Raytek MI3 100 1M SF3

Наличие уточняйте у менеджера

В наличии

Уточнить наличие

Нашли дешевле? Снизим цену!

Самовывоз

ул. Подольских Курсантов, 17, к.2

Время доставки

от 2-х дней при наличии на складе

Гарантия:
24 месяца

Госреестр:

Товар внесен в Госреестр СИ (ГРСИ)

Наши преимущества

Бесплатная доставка по всей территории России

Бесплатная доставка

по всей территории России

Бесплатная доставка по всей территории России

Гарантия низкой цены

на все оборудование

Бесплатная доставка по всей территории России

Гарантия производителя

от 1 года до 5 лет

Бесплатная доставка по всей территории России

Официальный дилер

в наличии все сертификаты

Описание стационарного инфракрасного пирометра RAYTEK серии MI3

Тип оборудования: Стационарный пирометр, инфракрасный термометр, бесконтактный пирометр

Производитель: RAYTEK (Райтек), Германия

Серия: MI3

Модель: MI3

Гарантия: 2 года

Госреестр средств измерений РФ: Внесен

Поверка: Включена в стоимость

Серия компактных термометров Raytek MI3 

На смену серии ИК стационарных термометров Thermalert MID, Raytek выпустил серию компактных термометров MI3, с расширенными возможностями и улучшенными техническими характеристиками. Преемственность старых моделей MID и новых MI3 сохранена. 
Наличие USB интерфейса в стандартном комплекте поставки, расширенный диапазон температуры и дополнительные функции обработки сигнала, позволяют встраивать датчики MI3 в системы автоматизации производственных процессов, использовать их в комплексном оборудовании.

Особенности

• Подключение до 8 датчиков к одному блоку электроники
• Концепция быстрого подключения Plug & Play 
• Работа до 120 °C /180 °C без охлаждения
• Различные спектральные диапазоны
• Расширенный температурный диапазон (для LT до 1000 °C)
• Новая модель G5 до 1650 °C (5 мкм) для стекла
• Пятно измерения от 0,5 мм (“ Close Focus“)
• Модели “Fast» с временем отклика 10 мс 
• Промышленный кабель (полиуретан): устойчив к маслам, кислотам и щелочам
• Лазерный прицел для 1M/2M

Диапазон измерений

LTS02, LTS10,LTH10 -40 … 600 °C
LTS20, LTF,LTH20 0 … 1000 °C
G5 250 … 1650 °C
2M 250…1400 °C
1M 500…1800 °C

Дополнительные материалы

Загруженных файлов нет

Как купить?

Сделать заказ через интернет-магазин в нашем каталоге продукции

В течение рабочего дня Вам будет выставлен счет на оплату, в котором будет указано наименование
товара, цена, количество и срок отгрузки в Ваш адрес.

Направить нам заявку по электронной почте, указанной на странице
выбранного Вами товара.

В заявке необходимо указать наименование и количество нужного Вам товара, а также реквизиты
организации плательщика.

Посетить наш офис, сделать заявку и получить счет на оплату в отделе
продаж

В выставочном зале Вы можете ознакомиться с предлагаемыми нами оборудованием, а технические
специалисты помогут Вам выбрать нужную продукцию.

Доставка

Мы имеем возможность доставки товара в любую точку России, интересующей транспортной компанией или
курьерской службой:

Товар можно доставить как до терминала транспортной компании, так и, непосредственно, до двери.

Стоимость доставки рассчитывается специалистами логистической службы нашей компании в кратчайшие
сроки
в необходимое место по желанию заказчика.

Уточнить условия и стоимость доставки Вы можете, связавшись со специалистами нашей компании.

Оплата

Юридическим лицам

С юридическими лицами отношения регламентируются договором, счетом на оплату, товарной накладной,
счет-фактурой (УПД) и безналичным переводом денежных средств из банка Покупателя на расчетный счет
Продавца.

Физическим лицам

Физическое лицо также может произвести оплату на наш расчетный счет банковским переводом или
наличными средствами. При получении товара передается пакет документов: оригинал счета на оплату
продукции, товарная накладная и счет-фактура (УПД).

Похожие товары

Наши услуги

Узнайте цену

Для получения цены заполните форму, наши менеджеры обязательно с Вами свяжутся

Уточнить наличие

Для уточнения наличия заполните форму, наши менеджеры обязательно с Вами свяжутся

Получить скидку в компании «АНК»

Для получения скидки заполните форму, наши менеджеры обязательно с Вами свяжутся

Задать вопрос специалистам компании «АНК»

Задайте вопрос по интересующему Вас оборудованию и в ближайшее время наши специалисты с Вами свяжутся.

Остались вопросы?

Получите бесплатную консультацию у наших менеджеров!

Нужна помощь?

  • Page 1: Operating Instructions

    Miniature Infrared Sensor Operating Instructions Rev. G Nov/2015 55201…

  • Page 3
    Thank you for purchasing this Raytek product. Register today at www.raytek.com/register to receive the latest updates, enhancements and software upgrades! © Raytek Corporation. Raytek and the Raytek Logo are registered trademarks of Raytek Corporation. All rights reserved. Specifications subject to change without notice.
  • Page 4
    ARRANTY The manufacturer warrants this product to be free from defects in material and workmanship under normal use and service for the period of two years from date of purchase, except as hereinafter provided. This warranty extends only to the original purchaser (a purchase from the manufacturer or a licensed distributor of the manufacturer is an original purchase).
  • Page 5: Table Of Contents

    Content CONTENT …………………………..5 1 SAFETY INSTRUCTIONS ……………………..10 2 DESCRIPTION …………………………13 2.1 O ··························································································································· 14 VERVIEW OXES 3 TECHNICAL DATA ……………………….15 3.1 M ················································································································· 15 EASUREMENT PECIFICATION 3.1.1 Sensing Heads ……………………….. 15 3.1.2 Comm Box ……………………….16 3.1.2.1 Comm Box (metal) ………………………..

  • Page 6
    5.4 W ··································································································································· 29 IRING ERMINAL 5.4.1 Comm Box (metal) ……………………..29 5.4.2 Comm Box (DIN 3TE) ……………………30 5.4.3 Comm Box (DIN 4 TE) ……………………31 5.4.4 Comm Box (DIN 6 TE) ……………………32 5.4.5 EMI Resistance for Comm Box (DIN) ………………..35 5.5 P ····························································································································…
  • Page 7
    9.2.4 Mains Supply ……………………….61 9.2.5 Ex Power Supply 115MI3ACIS / 230MI3ACIS …………….63 10 ACCESSORIES ………………………… 64 10.1 A ) ···················································································································· 64 CCESSORIES ALL MODELS 10.1.1 Multi-Channel Box ……………………… 64 10.1.2 USB/RS485 Adapter ……………………. 67 10.2 A (LT, G5 H ) ·················································································································…
  • Page 8: Data Logging

    ··················································································································································· 103 IRING 16.1.1 Comm Box (metal) …………………….. 103 16.1.2 Comm Box (DIN) ……………………… 103 16.2 A ··········································································································································· 104 DDRESSING 16.2.1 MI3 …………………………104 16.2.2 PC Network Adapter ……………………105 16.3 ASCII P ··························································································································· 106 ROGRAMMING 16.4 ·········································································································································· 107 HTTP ERVER 16.4.1 Data Logging ……………………..

  • Page 9: Lock Mode

    18.7.4 Factory default values ……………………121 18.7.5 Lock Mode ……………………….121 18.7.6 Mode Setting for the Digital Input FTC3 ………………121 18.7.7 Ambient Background Temperature Compensation …………….. 121 18.8 C ······································································································································· 121 OMMAND 18.8.1 ASCII Commands for Ethernet and Profinet ……………… 127 19 APPENDIX …………………………

  • Page 10: Safety Instructions

    Safety Instructions 1 Safety Instructions This document contains important information, which should be kept at all times with the instrument during its operational life. Other users of this instrument should be given these instructions with the instrument. Eventual updates to this information must be added to the original document. The instrument should only be operated by trained personnel in accordance with these instructions and local safety regulations.

  • Page 11
    Safety Instructions Safety Symbols AC (Alternating Current) DC (Direct Current) Risk of danger. Important information. See manual. Hazardous voltage. Risk of electrical shock. Helpful information regarding the optimal use of the instrument. Earth ground Protective ground Fuse Normally-open (NO) relay Normally-closed (NC) relay Switch or relay contact DC power supply…
  • Page 12
    Safety Instructions The instrument can be equipped with a Class 2 laser. Class 2 lasers shine only within the visible spectrum at an intensity of 1 mW. Looking directly into the laser beam can produce a slight, temporary blinding effect, but does not result in physical injury or damage to the eyes, even when the beam is magnified by optical aids.
  • Page 13: Description

    Description 2 Description The MI3 sensor series is the next generation of the well-established “MI class” sensor platform. It will be capable of covering a broad range of applications. The MI3 sensor series introduces various network communications, an externally accessible user interface, improved temperature measurement specifications and capabilities at an economic price.

  • Page 14: Overview Comm Boxe

    Description 2.1 Overview Comm Boxes MI3COMM MI3MCOMMN MI3MCOMM MI3MCOMM… metal box DIN 3TE DIN 4TE DIN 6TE Part number MI3COMM… MI3MCOMMN MI3MCOMM MI3MCOMM… Spectral Heads LT, G5, 1M, 2M LT, G5, 1M, 2M LT, G5, 1M, 2M LT, G5, 1M, 2M Head Support by firmware 8 heads…

  • Page 15: Technical Data

    Technical Data 3 Technical Data 3.1 Measurement Specification 3.1.1 Sensing Heads Temperature Range LTS02, LTS10, LTH10 -40 to 600°C (-40 to 1112°F) LTS20, LTF, LTH20 0 to 1000°C (32 to 1832°F) 250 to 1650°C (482 to 3002°F) 250 to 1400°C (482 to 2552°F) 500 to 1800°C (932 to 3272°F) Spectral Response 8 to 14 µm…

  • Page 16: Comm Box

    Technical Data 3.1.2 Comm Box Accuracy mA/V output ± 1°C (corresponds to ± 0.015 mA for the current output at 0-20 mA or ± 0.015 mA for the current output at 4-20 mA or 4 mV for the voltage output at 0-5 V or 8 mV for the voltage output at 0-10 V) TC output ±…

  • Page 17: O Ptical C Harts

    Technical Data 3.2 Optical Charts Figure 1: Spot Size Charts Rev. G Nov/2015…

  • Page 18: E Lectrical S Pecification

    Technical Data 3.3 Electrical Specification For an overview to the capabilities of the communication boxes, see section 2.1 Overview Comm Boxes, page 14. 3.3.1 Comm Box, all models Voltage Supply 8 to 32 VDC Power Consumption max. 6 W Alarm Output 1 potential-free relay output, 48 V / 300 mA Relay with wear-free contacts (solid state relay) for target temperature or head ambient temperature, electrically isolated from power supply…

  • Page 19: E Nvironmental S Pecification

    Technical Data 3.4 Environmental Specification 3.4.1 Sensing Head Ambient Temperature LT, G5 -10 to 120°C (14 to 248°F) -10 to 180°C (14 to 356°F) 1M, 2M 0 to 120°C (32 to 248°F) Laser (1M, 2M) automatic switch off at 65°C (149°F) Storage Temperature -20 to 180°C (-4 to 356°F) all other models…

  • Page 20: Comm Box (Din)

    Technical Data Electromagnetic Compatibility Applies to use in Korea only. Class A Equipment (Industrial Broadcasting & Communication Equipment) This product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and is not to be used in homes.

  • Page 21: D Imensions

    Technical Data 3.5 Dimensions 3.5.1 Sensing Head LT, G5 Standard cable length 1 m (3 ft.) Ø 5 mm (0.2 in) Figure 2: Dimensions of LT, G5 Sensing Heads 3.5.2 Sensing Head LTH Figure 3: Dimensions of LTH Sensing Head with separated Electronics 3.5.3 Sensing Head 1M, 2M Standard cable length 1 m (3 ft)

  • Page 22: Scope Of Delivery

    Technical Data Figure 5: Dimensions of Communication Box 3.5.5 Comm Box (DIN) The boxes come in a standard DIN rail size in accordance to EN 50022-35×7.5 (DIN 43880). Width MI3MCOMMN MI3MCOMM MI3MCOMM… DIN 3TE: DIN 4TE: DIN 6TE: 53.6 mm (2.1 in) 71.6 mm (2.8 in) 107.6 mm (4.2 in) Figure 6: Dimensions for Comm Boxes (DIN)

  • Page 23: Comm Box

    Technical Data 3.6.2 Comm Box  Communication box  for Comm Box (DIN) only — XXXMI3MCOMMSET: ferrite cores (4 pcs), shield tapes (4 pcs)  Software DVD  Quickstart guide Rev. G Nov/2015…

  • Page 24: Basics

    Basics 4 Basics 4.1 Measurement of Infrared Temperature All surfaces emit infrared radiation. The intensity of this infrared radiation changes according to the temperature of the object. Depending on the material and surface properties, the emitted radiation lies in a wavelength spectrum of approximately 1 to 20 µm. The intensity of the infrared radiation (heat radiation) is dependent on the material.

  • Page 25
    Comm Box, or power. Please note that:  The metal housings of the sensing head and the MI3 communication box are electrically connected to the shield of the head cable.  All inputs and outputs (except the alarm output and the outputs of the Comm Box (DIN 6TE, analog)) use the same ground and are electrically connected to the power supply.
  • Page 26: Installation

    Installation 5 Installation 5.1 Positioning Sensor location depends on the application. Before deciding on a location, you need to be aware of the ambient temperature of the location, the atmospheric quality of the location, and the possible electromagnetic interference in that location. If you plan to use air purging, you need to have an air connection available.

  • Page 27: Comm Box (Din)

    Installation Comm Box Power supply, (RAYMI3COMM) 2 analog Head 1 outputs, (RAYMI3…) 3 inputs Fieldbus Figure 11: Single Head Configuration with Comm Box To increase the number of supported sensing heads, you can use a dedicated accessory, see section 10.1.1 Multi-Channel Box, page 64.

  • Page 28: Comm Box (Metal)

    The total sensing head cable length for all networked sensing heads must not exceed 30 m (98 ft) for MI3 and 2×30 m (2×98 ft) for MI3M! Do not add a third party cable to extend the length of the sensing head cable! 5.3.1 Comm Box (metal)

  • Page 29: Comm Box (Din)

    Installation 5.3.2 Comm Box (DIN) The wiring of the sensing head cable is color coded, see section 5.4.3 Comm Box (DIN 4 TE), page 31. 5.4 Wiring, Terminal You need to connect the power supply and possibly the signal input/output wires. Use only cable with outside diameter from 4 to 6 mm (0.16 to 0.24 in), wire size: 0.14 to 0.75 mm²…

  • Page 30: Comm Box (Din 3Te)

    Installation 5.4.2 Comm Box (DIN 3TE) Sensing Heads USB Connector, Mini-B Figure 15: Terminal Wiring for the Comm Box DIN 3TE Rev. G Nov/2015…

  • Page 31: Comm Box (Din 4 Te)

    Installation 5.4.3 Comm Box (DIN 4 TE) Sensing Heads Termination USB Connector, Mini-B Figure 16: Terminal Wiring for the Comm Box DIN 4 TE Rev. G Nov/2015…

  • Page 32: Comm Box (Din 6 Te)

    Installation 5.4.4 Comm Box (DIN 6 TE) Sensing Heads Wiring Profibus or Modbus USB Connector, Mini-B Figure 17: Terminal Wiring for the Comm Box DIN 6 TE for Profibus and Modbus Rev. G Nov/2015…

  • Page 33
    Installation Sensing Heads USB Connector, Mini-B RJ45 connector Profinet or Ethernet Figure 18: Terminal Wiring for the Comm Box DIN 6 TE for Profinet and Modbus Rev. G Nov/2015…
  • Page 34
    Installation Sensing Heads see section Analog Outputs OUT1 — OUT4, page 41. Analog Outputs USB Connector, Mini-B Figure 19: Terminal Wiring for the Comm Box DIN 6 TE, analog Rev. G Nov/2015…
  • Page 35: Emi Resistance For Comm Box (Din)

    Installation 5.4.5 EMI Resistance for Comm Box (DIN) To maintain EMI compliance to CE standards the attached Ferrite cores need to be placed on all wires! Make sure that the cable shields will be connected to the terminal pin <Shield>! self-adhesive shield tape to wrap round the cable Shield wire connected to…

  • Page 36: Power On Procedure

    Installation 5.5 Power On Procedure To power the system, the following procedures are required. 5.5.1 One Head System Disconnect power to the box. Connect the wires for the head to the box terminal. Power the box. The box now assigns address 1 to the head. 5.5.2 Multiple Heads –…

  • Page 37
    Installation 5.6 USB The USB interface comes with each box (USB connector, Mini-B). Connect a single unit to a USB computer port by using an appropriate USB cable. USB connector, type Mini-B The computer’s USB port Figure 21: USB Connection via the Comm Box (metal) The computer’s USB port Figure 22: USB Connection via the Comm Box (DIN Rail) Rev.
  • Page 38
    Installation Consider the following sequence for the installation: Disconnect/reconnect the USB interface cable to the computer! Ignore the Windows Wizard <Found New Hardware>! Navigate manually to the dedicated USB driver <RaytekMIcomport.inf> on the support media and execute it. It is strongly recommended to check the correct driver installation under the Windows Operating System <Start>…
  • Page 39: F Ieldbus

    Installation 5.7 Fieldbus A simultaneous communication via USB and fieldbus is not allowed! 5.7.1 Addressing Each slave in the network must have a unique address and must run at the same baud rate! For setting the fieldbus configurations through the control panel, see section 8.3 <Box Setup>…

  • Page 40: Outputs

    Outputs 6 Outputs For the outputs the following groupings (setups) are possible: Output Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 OUT1 head temperature head temperature object temperature object temperature  OUT2 object temperature object temperature object temperature object temperature head temperature object temperature…

  • Page 41: A Nalog O Utputs Out1 — Out4

    Outputs 6.3 Analog Outputs OUT1 — OUT4 Comm Box: DIN 6TE, analog (4 channels) Source: object temperature / head ambient temperature Signal: 0/4 to 20 mA or 0 to 5/10 V Terminal: , GND Each signal output can be configured as either current or voltage output, whereby each sensing head can be assigned to each output.

  • Page 42: T Hermocouple O Utput Tc

    Outputs 6.5 Thermocouple Output TC Comm Box: metal Source: object temperature Signal: TCJ, TCK, TCR, or TCS Terminal: TC, GND This output can be configured as thermocouple output type J, K, R, or S. For that output, you must install a dedicated compensation cable. The output impedance is 20 Ω. The output is short circuit resistant.

  • Page 43: Inputs

    Inputs 7 Inputs Three external inputs FTC1, FTC2, and FTC3 are used for the external control of the unit. You cannot enable the input functions through the control panel! FTC1 FTC2 FTC3 Emissivity (analog control) Emissivity (digital control) Ambient Background Temperature Compensation Trigger/Hold Function Laser Switching Table 2: Overview for FTC Inputs…

  • Page 44: E Missivity ( Digital )

    Inputs + 5 VDC “product 1” R1 = 200 Ω 4.0 V (ε=0.9) To the FTC input R2 = 500 Ω of the box 1.5 V (ε=0.4) “product 2” R3 = 300 Ω Figure 25: Adjustment of Emissivity at FTC Input (Example) 7.2 Emissivity (digital) Function: emissivity (digital control)

  • Page 45
    Inputs The sensor is capable of improving the accuracy of target temperature measurements by taking into account the ambient or background temperature. This feature is useful when the target emissivity is below 1.0 and the background temperature is significantly hotter than the target temperature. For instance, the higher temperature of a furnace wall could lead to hotter temperatures being measured especially for low emissivity targets.
  • Page 46: Trigger/Hold

    Inputs 7.4 Trigger/Hold Function: Trigger/Hold Signal: digital low/high Terminal: FTC3, GND The FTC3 input can be used as an external trigger functioning as “Trigger” or “Hold”. All sensing heads are effected by the FTC3 input at the same time. Figure 28: Wiring of FTC3 as Trigger/Hold Trigger: A logical low signal at the input FTC3 will reset the peak or valley hold function.

  • Page 47: L Aser S Witching

    Inputs object temperature Temp output temperature Trigger Time Figure 30: FTC3 for Holding the Output Temperature 7.5 Laser Switching Function: Laser switching on/off Signal: digital low/high Terminal: FTC3, GND The FTC3 input can also be used as an external trigger to switch the laser (only available for selected sensing head models).

  • Page 48: Control Panel

    Operation 8 Operation Once you have the sensor positioned and connected properly, the system is ready for continuous operation. The control panel is accessible on the outside of the box. Push buttons provide positive tactile feedback to the user. User interface includes a backlit LCD, displaying sensor set up parameters and temperature outputs.

  • Page 49
    Operation The head number is shown only if two or more sensing heads are connected to the communication box. Symbol/Message Meaning Remark Average Peak Hold Valley Hold HOLD Trigger set to HOLD function Advanced Peak Hold Software controlled APHA Advanced Peak Hold with Averaging Software controlled Advanced Valley Hold Software controlled…
  • Page 50: Head> Page

    Operation #1 (Head) #2 (Head) BOX SETUP BOX INFO Serial No. Tambient Relay Mode Rev. Tbox Emissivity OUT1 Mode* Transmiss. OUT1 Source* Laser* OUT1 Value* Average OUT1 low temp.* Peak Hold OUT1 high temp.* Val. Hold OUT2 Mode* Trigger OUT2 Source* Alarm Mode OUT2 Value* Set Point…

  • Page 51
    Operation <Laser> handles the laser in the following modes: <off> switches the laser off <flash> forces the laser to blink at 8 Hz <on> switches the laser permanently on <external> switches the laser via external input FTC3 An activated laser will be switched off automatically after 10 minutes. The laser is available for 1M and 2M heads only.
  • Page 52
    Operation <OUT1 Mode> defines the mode for the analog output: <TCJ>, <TCK>, <TCR>, <TCS> <0-5V> <0-10V> <disable> output goes to high-resistance <OUT1 Source> assigns the selected head to the analog output: <#1>, <#2>, …, <Head > <OUT1 Value> defines the basis for the output value: <Tobject>: object temperature to be output <Tambient>: head ambient temperature to be output <OUT1 low temp.>…
  • Page 53: Box Info> Page

    Operation <Temperature Unit> the temperature unit can be set to °C or °F. Note that this setting influences the digital interfaces like RS485 for both object and head ambient temperature. <Key Enter Lock> the box has a user interface lockout feature that keeps the box from being accidentally changed from the control panel (locked by default under DataTemp Multidrop Software and Profinet communications).

  • Page 54: Peak Hold

    Operation Attention: The disadvantage of averaging is the time delay of the output signal. If the temperature jumps at the input (hot object), the output signal reaches only 90% magnitude of the actual object temperature after the defined average time. 8.5.2 Peak Hold The output signal follows the object temperature until a maximum is reached.

  • Page 55: Advanced Peak Hold

    Operation Temp output temperature object temperature hold time hold time Time Figure 37: Valley Hold A defined hold time of 999 s (symbol “∞” in the display) will put the device into continuous valley detection mode. A low level input (GND) at external input FTC3 will promptly interrupt the hold time and will start the minimum detection again.

  • Page 56: Advanced Valley Hold

    Operation 8.5.5 Advanced Valley Hold This function works similar to the advanced peak hold function, except that it will search the signal for a local minimum. 8.5.6 Advanced Peak Hold with Averaging The output signal delivered by the advanced peak hold functions tends to jump up and down. This is due to the fact, that only maximum points of the otherwise homogenous trace will be shown.

  • Page 57: Options

    Options 9 Options Options are items that are factory installed and must be specified at time of order. The following are available:  Longer head cables in the lengths: 3 m / 9.8 ft. (…CB3) 8 m / 26 ft. (…CB8) 15 m / 49 ft.

  • Page 58: Avoidance Of Condensation

    Options 9.1.1 Avoidance of Condensation If environmental conditions makes water cooling necessary, it is strictly recommended to check whether condensation will be a real problem or not. Water cooling also causes a cooling of the air in the inner part of the sensor, thereby decreasing the capability of the air to hold water. The relative humidity increases and can reach 100% very quickly.

  • Page 59: I Ntrinsic S Afety

    9.2 Intrinsic Safety 9.2.1 Sensing Heads The sensing heads for the MI3, MI3xxLTH, and MI3100 series are available as intrinsic safety rated sensing heads (…IS) intended for use in explosive atmospheres. The sensing heads xxMI3xxxISx and xxxMI3100xxxISx follow the ATEX / IECEx certification in…

  • Page 60: Installation

    IECEx Certificate of Conformity for Power Supply, page 142. 9.2.3 Installation The basic installation of sensing heads and the Ex Power Supply is shown in the following figure. MI3 Communication Box Ex Power Supply Explosion critical area 100 to 127 VAC 200 to 240 VAC Total sensing head cable length: max.

  • Page 61: Mains Supply

    Options The standard data cable length to the communication box is 5 m (16 ft). In response to the interference in the environment the length of the cable may be up to 30 m (98 ft). Use only shielded cable with low capacitance about 100 pF/m (33pF/ft). The following illustration shows the external wiring of the Ex Power Supply with the sensing heads, the communication box and the mains supply.

  • Page 62
    Options  Before installation select the correct local mains voltage via the switch on the circuit board of the Ex Power Supply, see Figure 45.  A ground wire must be connected to the (PE — protective earth) terminal on the circuit board of the Ex Power Supply.
  • Page 63: Ex Power Supply 115Mi3Acis / 230Mi3Acis

    Options 9.2.5 Ex Power Supply 115MI3ACIS / 230MI3ACIS The two variants of the Ex Power Supply without voltage selection switch are hard wired to the mains voltage. These devices are considered as nonsparking and may be installed in a non-hazardous area or in a hazardous area Zone 2 EPL Gc to supply power to intrinsically safe sensing heads.

  • Page 64: Accessories

    Accessories 10 Accessories A full range of accessories for various applications and industrial environments are available. Accessories include items that may be ordered at any time and added on-site. 10.1 Accessories (all models)  Multi-Channel Box (XXXMI3CONNBOX)  USB/RS485 Adapter for boxes with RS485 interface (XXXUSB485) 10.1.1 Multi-Channel Box The Multi-Channel Box can be used for all communication boxes.

  • Page 65
    Accessories Figure 48: Dimensions to Comm Box (MI3COMM or MI3MCOMM) Figure 49: Wiring Diagram for 8 Heads Rev. G Nov/2015…
  • Page 66
    Correct position of the shield before mounting Figure 50: Correct Mounting of the Cable Shield The total sensing head cable length for all networked sensing heads must not exceed 30 m/98 ft (for MI3) and 2×30 m/2×98 ft (for MI3M)! Rev. G Nov/2015…
  • Page 67: Usb/Rs485 Adapter

    Accessories 10.1.2 USB/RS485 Adapter The USB/RS485 adapter is self-powering via the USB connection. Figure 51: USB/RS485 Adapter (XXXUSB485) Termination Figure 52: Wiring the RS485 Interface of the Box (left) and USB/RS485 Adapter (right) Rev. G Nov/2015…

  • Page 68: A Ccessories (Lt, G5 H Eads )

    Accessories 10.2 Accessories (LT, G5 Heads)  Adjustable Mounting Bracket (XXXMIACAB)  Fixed Mounting Bracket (XXXMIACFB)  Sensing head mounting nut (XXXMIACMN)  Air Purge Jacket (XXXMIACAJ)  Air Cooling System with 0.8 m (2.6 ft.) air hose (XXXMIACCJ) or with 2.8 m (9.2 ft.) air hose (XXXMIACCJ1) …

  • Page 69: Adjustable Mounting Bracket

    Accessories 10.2.1 Adjustable Mounting Bracket Figure 54: Adjustable Mounting Bracket (XXXMIACAB) Rev. G Nov/2015…

  • Page 70: Fixed Mounting Bracket

    Accessories 10.2.2 Fixed Mounting Bracket Figure 55: Fixed Mounting Bracket (XXXMIACFB) 10.2.3 Air Purge Jacket For LTH sensing heads, the Air Purge Jacket is only available pre-mounted from the factory (XXXMIACAJI)! The air purge jacket is used to keep dust, moisture, airborne particles, and vapors away from the sensing head.

  • Page 71: Air Cooling System

    Accessories Fitting to M5 inner thread Hose with inner diameter of 3 mm (0.12 in), outside 5 mm (0.2 in) Figure 56: Air Purge Jacket (XXXMIACAJ) Figure 57: Mounting the Air Purge Jacket Remove the sensor ① and cable from the communication box by disconnecting the wires from the terminal.

  • Page 72
    Accessories max. ambient 200°C (392°F) max. ambient 50°C (122°F) Air Hose Sensing Head Cable Adapter Air cooling (max. 35°C / 95°F) Figure 58: Air Cooling System (XXXMIACCJ) T-Adapter Hose to sensing head Cable to box Fitting free for air connection Hose: inner Ø: 9 mm (0.35 in) outer Ø: 12 mm (0.47 in)
  • Page 73
    Accessories Air Flow: 60 l / min (2.1 cubic feet per minute) 50 l / min (1.8 cfm) 40 l / min (1.4 cfm) Hose Length Figure 60: Maximum Ambient Temperature is dependent on Air Flow and Hose Length Note: “Hose Length“ is the length of the hose exposed to high ambient temperature (not the overall length of the hose).
  • Page 74
    Accessories Figure 61: Air Cooling System: Purging Jacket and T-Adapter The Air Cooling System consists of: ① sensing head ② inner plastic fitting (air purge jacket) ③ front part of the air-purging jacket ④ back part of the air-purging jacket ⑤…
  • Page 75: Right Angle Mirror

    Accessories Hose: inner Ø: 9 mm (0.35 in) outer Ø: 12 mm (0.47 in) Figure 62: Dimensions of Air Cooling System 10.2.5 Right Angle Mirror The right angle mirror comes in two different versions: XXXMIACRAJ right angle mirror as accessory for air purge jacket or air cooling system XXXMIACRAJ1 right angle mirror with integrated air purge (not available for LTH sensing heads) Figure 63: Right Angle Mirror XXXMIACRAJ (left),…

  • Page 76: Protective Windows

    Accessories The IR beam length within the right angle mirror is 18 mm (0.7 in.) which needs to be considered for spot size calculations. 10.2.6 Protective Windows Protective windows can be used to protect the sensing head from dust and other contamination. The protective window can be directly screwed onto the sensing head.

  • Page 77
    Accessories For correct temperature readings, the transmission of the close focus lens must be set via the control panel in the communication box. See section 8.2 <Head> Page, page 50! Make sure the measuring head and the close focus lens are at the same temperature! Figure 66: Sensing Head with Close Focus Lens (XXXMI3ACCFL) Figure 67: Spot Size Charts for Close Focus Lens Rev.
  • Page 78: A Ccessories (1M, 2M H Eads )

    Accessories 10.3 Accessories (1M, 2M Heads)  Fixed Mounting Bracket (XXXMI3100FB)  Adjustable Mounting Bracket (XXXMI3100ADJB)  Isolation Kit (MI3100ISOKIT)  Air Purge Collar (XXXMI3100AP)  Right Angle Mirror (XXXMI3100RAM)  Protective Window (XXXMI3100PW) Air Purge Collar Sensing Head Mounting Nut Fixed Mounting Bracket Protective Window…

  • Page 79: Fixed Mounting Bracket

    Accessories 10.3.1 Fixed Mounting Bracket Figure 69: Dimensions of Fixed Mounting Bracket (XXXMI3100FB) Rev. G Nov/2015…

  • Page 80: Adjustable Mounting Bracket

    Accessories 10.3.2 Adjustable Mounting Bracket Figure 70: Dimensions of Adjustable Mounting Bracket (XXXMI3100ADJB) Rev. G Nov/2015…

  • Page 81: Isolation Kit

    Accessories 10.3.3 Isolation Kit The isolation kit (MI3100ISOKIT) can be used likewise for the fixed mounting bracket (XXXMI3100FB) and the adjustable mounting bracket (XXXMI3100ADJB). Two non-conductive rings insulate the sensing head (1M, 2M) electrically from the mounting bracket. The isolation kit is used to implement installations with one earth grounded point only, see section 4.5 Electrical Interference, page 24.

  • Page 82: Right Angle Mirror

    Accessories 10.3.5 Right Angle Mirror The Right Angle Mirror is used to turn the field of view by 90° against the sensor axis. It is recommended when space limitations or excessive radiation do not allow for direct alignment of the sensor to the target.

  • Page 83: Protective Window

    Accessories 10.3.6 Protective Window Protective windows can be used to protect the sensing head from dust and other contamination. The protective window can be directly screwed onto the sensing head. The following table provides an overview of the available windows. Order number Material Transmission…

  • Page 84: Maintenance

    Maintenance 11 Maintenance Our sales representatives are always at your disposal for questions regarding application assistance, calibration, repair, and solutions to specific problems. Please contact your local sales representative, if you need assistance. In many cases, problems can be solved over the telephone. If you need to return equipment for servicing, calibration, or repair, please call our Service Department for authorization prior to return.

  • Page 85: Cleaning The Lens

    Maintenance Symptom Temperature over range > 1200°C > 1372°C > 1768°C > 1768°C (2192°F) (2502°F) (3214°F) (3214°F) Temperature under range -210°C -210°C -50°C -50°C (-346°F) (-346°F) (-58°F) (-58°F) Head ambient temperature out of range > 1200°C > 1372°C > 1768°C >…

  • Page 86: S Ensing H Ead E Xchange

    Maintenance Do not use any ammonia or any cleaners containing ammonia to clean the lens. This may result in permanent damage to the lens’ surface! 11.4 Sensing Head Exchange To exchange a sensing head, the following procedure is required: Disconnect power to the box. Disconnect all head wires from the box terminal.

  • Page 87: Software Features

    DataTemp Multidrop Software 12 DataTemp Multidrop Software 12.1 Software Features DataTemp Multidrop DTMD provides sensor setup, remote monitoring, and simple data logging for analysis or to meet quality record-keeping requirements. Additional features configurable with DTMD Software:  Eight-position “recipe” table that can be easily interfaced to an external control system …

  • Page 88: Rs485

    RS485 13 RS485 The RS485 serial interface is used for long distances up to 1200 m (4000 ft) or for networked communication boxes. To connect the RS485 interface to a standard computer you should use a dedicated adapter, see section 10.1.2 USB/RS485 Adapter, page 67.

  • Page 89: Profibus

    Profibus 14 Profibus Profibus DP-V0 defines a cyclical data exchange between a master (e.g. a PLC) and a slave (MI3 sensor). At start-up first an array of parameters (Profibus specific data) is sent from the master to the slave, followed by an array with the configuration (sensor specific presetting’s taken from the GSD file) also sent from the master to the slave.

  • Page 90
    Profibus A Sub-D female connector or a M12 female connector can be ordered separately for Profibus. The M12 connector is B-coded. Please note the Sub-D connector is not IP rated! Figure 77: Sub-D Connector (…P2) and M12 Connector (…P1) Profibus Sub-D Pin M12 Pin (cable color)
  • Page 91: Comm Box (Din)

    Profibus 14.1.2 Comm Box (DIN) Termination Indicator Profibus n.a. Shield (negative signal) (not supported while termination “on”) (positive signal) (not supported while termination “on”) (negative signal) (positive signal) Shield n.a. , yellow ON: data-exchange Figure 80: Terminal for Comm Box (DIN 6TE) Rev.

  • Page 92: P Rogramming

    Profibus 14.2 Programming 14.2.1 Parameter Data Byte Address Description Format Range without offset 0 to 6 DP-V1 Status1 DP-V1 Status2 DP-V1 Status3 Temp. unit 67=°C, 70=°F 67 or 70 Reserved 12, 13 Bottom temp. of output 1 in 0.1°C /°F 14, 15 Top temp.

  • Page 93: Input Data

    Profibus Byte Address Description Format Range without offset Laser Head_1 0 = off, 1 = on, 0 or 1 2 = flashing 60…63 reserved, for future consideration 64 … Head_2 84 … Head_3 104 … Head_4 124 … Head_5 144 … Head_6 164 ……

  • Page 94: Output Data

    Profibus 14.2.3 Output Data The device does not have output data in the original meaning. But the output data may be used to change the initialization of the device (which was set once at start-up) when the bus is in data exchange mode.

  • Page 95
     up to which index the user data is valid 11 (0x0B) box error code 12 … 22 (0x0C …16) last MI3-command which created an error as answer; ASCII code 23 (0x17) head_1 error code 24 (0x18)
  • Page 96
    Profibus Highest Last bad head Head 1 Head 8 error bits error bits Figure 82: Diagnose Data with Error “Cable Break at Head 1” Rev. G Nov/2015…
  • Page 97: Modbus

    Modbus 15 Modbus The Modbus protocol follows the master/slave model. One master controls one or more slaves. Typically, the master sends a request to a slave, which in turn sends a response. The request/response mechanism is called a transaction. Requests and responses are also referred to as messages. Specification: Version: Modbus serial line (RS485)

  • Page 98: Comm Box (Din)

    Modbus 15.1.2 Comm Box (DIN) Termination Indicators Modbus (output) Shield D0_2 (negative signal) (not supported while termination “on”) D1_2 (positive signal) (not supported while termination “on”) D0_1 (negative signal) D1_1 (positive signal) Shield (output) n.a. , yellow Communication , red Error Figure 84: Terminal for Comm Box (DIN 6TE) Rev.

  • Page 99: P Rogramming

    Comm Box. Items (registers, discretes or coils) are addressed starting at zero. Therefore items numbered 1-10000 are addressed as 0-9999. Start Size Modbus Access Data Content Values MI3[M] address [bits] Type command input register short error code for last…

  • Page 100
    Modbus Start Size Modbus Access Data Content Values MI3[M] address [bits] Type command discretes input bit field Get connected heads bit 0: head 1 .. bit 7: head 8 bit high: head connected bit low: head disconnected discretes input bit field Get registered heads bit 0: head 1 ..
  • Page 101: Head Parameter

    Modbus 15.2.2.2 Head Parameter <n> … head number, depending on the registered heads Starting Size Modbus Data Content Values MI3[M] address [bits] Access Type command <n>005 discretes bit field Head Status bit0: Temperature Unit input (0: deg. C, 1: deg. F)

  • Page 102
    Modbus Starting Size Modbus Data Content Values MI3[M] address [bits] Access Type command <n>220 holding char Emissivity Source I: internal command register E: ext. input (0V .. 5V) D: digital selected FTC1-3 <n>230 holding float Presel. Emissivity 0.1 .. 1.1 register <n>240…
  • Page 103: Ethernet

    (port 80) capability supporting up to 8 sensing heads Connection: M12 or RJ45 electrically isolated An opened Ethernet port will be closed automatically by the MI3 communication box if there is no data traffic within the time given by the <TTI> command! 16.1 Wiring 16.1.1 Comm Box (metal) The connector on the box side is an M12 plug-in connector, 4 pin D-coded, suited for industrial Ethernet with IP67 protection rate with a screw retention feature.

  • Page 104: A Ddressing

    The factory default IP address for the linescanner is 192.168.42.130. The IP address for the MI3 is not free of choice: It has to be unique in the network meaning that no other device in the network including the PC network adapter may run at the same IP address. The IP address for the MI3 can be set directly via the control panel.

  • Page 105: Pc Network Adapter

    103. The MI3 subnet address must be 193.221.142 as well. The host address of the MI3 must be in the range from 1 to 254 with the exception of 103 which is already used for the PC.

  • Page 106: Ascii P Rogramming

    4. Activate the radio button <Use the following IP address> and make the following settings: IP address: 192.168.42.x where x is an address between 0 and 255 except 130 which is already used by the MI3 by factory default Subnet mask: 255.255.255.0 Default gateway: {empty} 5.

  • Page 107: Http S Erver

    Ethernet 16.4 http Server The MI3 Comm Box with Ethernet provides a built-in http server for one or more client computers based on the http protocol within an Intranet. For getting/setting the network address through the control panel of the Comm Box, see section 8.3 <Box Setup>…

  • Page 108
    1 The data logging function is password protectable to ensure data consistency while having multiple clients connected to the MI3 http server. A valid password accepts digits only! The factory presetting is 1234.
  • Page 109: Profinet

    Profinet 17 Profinet The Profinet fieldbus MI3 communication box (called fieldbus communicator) maps the object and internal temperature of all pyrometer modules on Profinet IO. In the initialization phase, the fieldbus communicator determines the physical structure of the node and creates a local process image with all pyrometers.

  • Page 110: P Rogramming

    Pyrometer modules is based on the device’s GSD file. 17.2.1.1 GSD File Under Profinet IO, the features of the devices are described by the manufacturer in form of a GSD file and made available to the user. The GSD file for the MI3 IO device: GSDML-V2.25-Raytek-MI3-xxxxxxxx 17.2.1.2 Configuration The I/O device is configured in accordance with the physical arrangement of the node (slot oriented).

  • Page 111: Parameters Of The Fieldbus Communicator

    Profinet 17.2.2.1 Parameters of the Fieldbus Communicator The parameters of the fieldbus communicator are used to set the overall settings of the Profinet IO node. Some of the setting are used in the modules as default settings and can be optionally overwritten within the module configuration.

  • Page 112
    Profinet Figure 90: Parameters of the Fieldbus Communicator (exemplary for a STEP7 environment) Rev. G Nov/2015…
  • Page 113: Parameters Of The Pyrometer Module

    Profinet 17.2.2.2 Parameters of the Pyrometer Module Certain characteristics of same pyrometer modules can be parameterized during the configuration. Parameter Description Setting Pyrometer number Set the number of pyrometer 1..8 Emissivity * 1000 (0.9  900) 100 … 1100 Transmissivity * 1000 (1.0 …

  • Page 114: Input Data Structure

    Profinet 17.2.3 Input Data Structure 17.2.3.1 Input Data of Fieldbus Communicator The input data length is 5 Byte. Address without offset Length Format Value 1 Byte Bit0 Trigger state ( 0 – inactive, 1 – active) 4 Byte Real (Big Endian, Motorola) Internal temperature of the station 17.2.3.2 Input Data of Pyrometer Module The input data length of pyrometer module is 8 Byte.

  • Page 115
    Profinet indicator in APDU-Status is set by the communicator and a diagnostic alarm is additionally transmitted. As part of the diagnosis of the fieldbus communicator, bit 2 indicates a communication error to the pyrometer module. In this case, a diagnostic interrupt is triggered for the I/O controller. As part of the diagnosis of the pyrometer module, bit 6 indicates a communication error to the registered pyrometer module.
  • Page 116: Ascii Programming

    ASCII Programming 18 ASCII Programming This section explains the system’s ASCII communication protocols. A protocol is the set of commands that defines all possible communications with the sensor. The commands are described along with their associated ASCII command characters and related message format information. Use them when writing custom programs for your applications or when communicating with your sensor using a terminal program.

  • Page 117: A Ddressing

    ASCII Programming Setting a parameter (Poll Mode) The parameter will be stored into the device EEPROM. E=0.975<CR> “E“ is the parameter to be set “=“ is the command for “set a parameter“ “0.975“ is the value for the parameter <CR> (carriage return, 0Dh) is closing the request Remark: It is possible to close with <CR>…

  • Page 118: D Evice I Nformation

    ASCII Programming Examples requests the emissivity for sensing head at address 2 on the single box 2E=0.975 sets the emissivity to 0.975 for sensing head at address 2 on the single box !2E0.975 sensing head at address 2 confirms the emissivity setting on the single box 017E=0.5 Sets emissivity on head #1 on box 017 0171E=0.5…

  • Page 119: Emissivity Setting And Alarm Set Points

    ASCII Programming 18.5.3 Emissivity Setting and Alarm Set points The device allows three choices for the emissivity setting and two for the alarm output setting. Selection of the emissivity setting ES=I Emissivity set by a constant number according to the „E“ command ES=E Emissivity set by a voltage on FTC1 (analog input) ES=D…

  • Page 120: Device Control

    ASCII Programming Advanced Peak/Valley Hold with Averaging: C=250.0 threshold: 250°C AA=15.0 averaging time (90%): 15 s 18.6 Dynamic Data All temperature related information is calculated multiple times per second. To request the dynamic data, the following commands are available: target temperature internal temperature of the sensing head internal temperature of the electronics housing energy value of the infrared temperature…

  • Page 121: Command Set

    ASCII Programming KB=1 relay contacts permanently closed KB=2 relay contacts normally open KB=3 relay contacts normally closed XS=125.3 threshold setting to 125.3°C (if U=C is set) 18.7.4 Factory default values It is possible to reset the unit to the default values. factory default values will be set 18.7.5 Lock Mode The access to the unit is possible via serial interface (software) and via the direct user input (mode…

  • Page 122
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Ambient background °C/°F 23°C    temp. compensation float Advanced hold with 0 – 999.0 s 000.0s    average float Control ambient 0 –…
  • Page 123
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / External module 0 – no module  2 – 2 channels 4 – 4 channels (analog outputs) Presel. Emissivity  0 — 7 Pointer integer Emissivity Source …
  • Page 124
      control integer 1 = on 2 = Target norm. open depreciated for MI3 (use 3 = Target norm. closed the commands KB and 4 = Intern norm. open KH instead of) 5 = Intern norm. closed Relay alarm output …
  • Page 125
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Output 1 source O1O=v, v – float value O1O=1I   or nT, n – head number or nI if v = 60 – controlled by head 1(O1O=1T) Output 2 source O2O=v,…
  • Page 126
    ASCII Programming Description Char Format P B S N Legal Values Factory default Head / Sensor initialization 1 after reset  0 if XI=0 Box Temperature float   (C/F) FTC3 trigger/hold  T = trigger, H = hold analog Output 1 mode XO1O XO1O=v 0 –…
  • Page 127
    ASCII Programming 18.8.1 ASCII Commands for Ethernet and Profinet Description Char Format P B S N Legal Values Factory default Head / IP address 192.xxx.xxx.xxx 192.168.42.130 2.19   (Ethernet) 0.0.0.0 (Profinet) Net Mask   255.255.255.0 255.255.255.0 2.19 (Ethernet) 0.0.0.0 (Profinet) Gateway…
  • Page 128: Appendix

    Appendix 19 Appendix 19.1 Determination of Emissivity Emissivity is a measure of an object’s ability to absorb and emit infrared energy. It can have a value between 0 and 1.0. For example a mirror has an emissivity of < 0.1, while the so-called “Blackbody“ reaches an emissivity value of 1.0.

  • Page 129
    Appendix ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0.2-0.4 Alloy A3003, Oxidized Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.02-0.1 0.02-0.1 Brass Polished 0.01-0.05 0.01-0.05 0.01-0.05 Burnished Oxidized Chromium 0.03-0.3 0.03-0.3 0.02-0.2…
  • Page 130
    Appendix Polished Sheet Molten 0.1-0.2 0.1-0.2 — Oxidized 0.7-0.9 0.7-0.9 0.7-0.9 Stainless 0.15-0.8 0.15-0.8 0.1-0.8 Tin (Unoxidized) 0.05 0.05 0.05 Titanium Polished 0.1-0.3 0.1-0.3 0.05-0.2 Oxidized 0.5-0.7 0.5-0.7 0.5-0.6 Tungsten 0.05-0.5 0.05-0.5 0.03 Polished 0.05-0.25 0.05-0.25 0.03-0.1 Zinc Oxidized Polished 0.03 0.03 0.02…
  • Page 131
    Appendix ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.95 Asphalt 0.95 0.95 Basalt Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum Ceramic 0.8-0.95 0.95 Clay 0.85-0.95 0.95 Concrete 0.95 Cloth 0.95 0.95 Glass Plate 0.98 0.85 “Gob”…
  • Page 132: C Onformity For S Ensing H Eads

    Appendix 19.3 ATEX Certificate of Conformity for Sensing Heads Rev. G Nov/2015…

  • Page 133
    Appendix Rev. G Nov/2015…
  • Page 134
    Appendix Rev. G Nov/2015…
  • Page 135
    Appendix 19.4 ATEX Certificate of Conformity for Ex Power Supply Rev. G Nov/2015…
  • Page 136
    Appendix Rev. G Nov/2015…
  • Page 137
    Appendix Rev. G Nov/2015…
  • Page 138: C Onformity For S Ensing H Eads

    Appendix 19.5 IECEx Certificate of Conformity for Sensing Heads Rev. G Nov/2015…

  • Page 139
    Appendix Rev. G Nov/2015…
  • Page 140
    Appendix Rev. G Nov/2015…
  • Page 141
    Appendix Rev. G Nov/2015…
  • Page 142: C Onformity For P Ower S Upply

    Appendix 19.6 IECEx Certificate of Conformity for Power Supply Rev. G Nov/2015…

  • Page 143
    Appendix Rev. G Nov/2015…
  • Page 144
    Appendix Rev. G Nov/2015…
  • Page 145
    Appendix Rev. G Nov/2015…
  • Page 146
    Notes 20 Notes Rev. G Nov/2015…
  • RayTek MI Miniature Infrared Sensor — page 1

     MI Miniature Infrared Sensor              Operating Instructions Rev. F 04/2006 54301 …

  • RayTek MI Miniature Infrared Sensor — page 2

          Declaratio n  of  Conformity  for  the  European  Communit y This  instrument  conforms  to:  EMC:  IEC/EN  61326 ‐ 1  Safety:  EN  61010 ‐ 1:1993  /  A2:1995  …

  • RayTek MI Miniature Infrared Sensor — page 3

      Contacts  Europe  Raytek  GmbH  13127  Berlin,  German y  Blankenburger  Str.  135  Tel:  +49  30  478008  –  0   +49  30  478008  –  400  Fax:  +49  30  4710251  raytek@raytek.de  USA  Raytek  Corporation  CA  95061  –  1820,  Santa …

  • RayTek MI Miniature Infrared Sensor — page 4

      W ARRANTY  The  manufacturer  warrants  this  ins trument  to  be  free  from  defects  in  material  and  workmans hip  under  normal  use  and  service  for  the  period  of  two  years  fr om  date  of  purchase.  This  warranty  extends  o …

  • RayTek MI Miniature Infrared Sensor — page 5

      T ABLE  OF  C ONTENTS  1  SAFETY  INSTRUCTIONS…………………………………….. 1 2  DESCRIPTION ……………………………………………………… 3 3  TECHNICAL  DATA ……………………………………………… 4 3.1  M EASUREMENT  S PECIFICATIONS ……………………… …

  • RayTek MI Miniature Infrared Sensor — page 6

      5.3.1  Signal  Output …………………………………………… 19 5.3.2  Head  Ambient  Temp.  /  Alarm  Out p ut …………. 20 5.3.3  Thermo couple  Output ………………………………… 22 5.4  I NPUTS  FTC…………………………………………………….. 23 5.4.1  …

  • RayTek MI Miniature Infrared Sensor — page 7

      8  ACCESSORIES ……………………………………………………. 46 8.1  O VERVIEW ………………………………………………………. 46 8.2  A DJUSTABLE  M OUNTING  B RACKET ……………………. 48 8.3  F IXED  M OUNTING  B RACKET ……………………………… 49 8.4  A IR ? …

  • RayTek MI Miniature Infrared Sensor — page 8

      11.6.2  Analog  Output,  Scaling …………………………… 73 11.6.3  Alarm  Output…………………………………………. 73 11.6.4  Factory  defaul t  values ………………………………. 73 11.6.5  Lock  Mode ………………………………………………. 74 11.6.6  Mode …

  • RayTek MI Miniature Infrared Sensor — page 9

    Safety  Instru ctions  MI  1  1  Safety  Instructions  This  document  contains  important  infor mation,  which  should  be  kept  at  all  times  with  the  instrumen t  during  its  operational  life.  Other  users  of  this  instrument  should  be ? …

  • RayTek MI Miniature Infrared Sensor — page 10

    Safety  Instru ctions  2  MI  Operating  In struc tions  The  following  symbols  are  used  to  highlight  essential  safe ty  information  in  the  operation  in structions:  Helpful  information  regarding  the  optimal  use  of  the  instrume nt.  Warnings ? …

  • RayTek MI Miniature Infrared Sensor — page 11

    Description  MI  3  2  Description  The  miniature  infrared  sensor s  MI  are  noncontact  infrared  temperature  me asurement  sys tems.  They  accurately  and  repeat  ably  measure  the  amoun t  of  energy  emitted  from  an  object  and  convert  …

  • RayTek MI Miniature Infrared Sensor — page 12

    Technical  Data  4  MI  3  Technical  Data  3.1  Measur ement  Specif ications  Temperature  Range  LT ‐ 40  to  600°C  ( ‐ 40  to  1112°F)  for  J ‐ Thermocouple: ‐ 25  to  600°C  ( ‐ 13  to  1112°F)  Spectral  Response  LT  8  to  14 ? …

  • RayTek MI Miniature Infrared Sensor — page 13

    Technical  Data  MI  5  Temperature  Resolution  LT  ±  0.1  K  (±  0.2°F)*   ±  0.25  K  (±  0.5°F)**  *  For  a  zoomed  temperat ure  spa n  of  300°C  (600°F)  **  For  the  full  temperature  range  of  the  unit  Temperature  …

  • RayTek MI Miniature Infrared Sensor — page 14

    Technical  Data  6  MI  3.2  Optica l  Specifications  Optical  Resolution  D:S  MID,  MIC;  MIH  22:1  (typ.),  21:1  (guaranteed)  MID,  MIC;  MIH  10:1  MID,  MIC  2:1  At  90%  energy  in  minimum  and  distanc e  400  mm  (15.7  in.)   F …

  • RayTek MI Miniature Infrared Sensor — page 15

    Technical  Data  MI  7  3.3  Electric al  Specifications  Power  Supply  Voltage  12  to  26  VDC  Current  100  mA  Outputs  1.  Output  (OUT)  0  to  20  mA,  or  4  to  20  mA,  or  0  to  5  V,  or  Thermocouple  (J  or  K)  2 …

  • RayTek MI Miniature Infrared Sensor — page 16

    Technical  Data  8  MI  3.4  Environmental  Specif ications  Ambient  Temperature  MIH  sensing  head  0  to  180°C  (32  to  356°F)  MIC  sensing  hea d  0  to  125°C  (32  to  257°F)  MID  sensing  head  0  to  85°C  (32  to  185°F)  …

  • RayTek MI Miniature Infrared Sensor — page 17

    Technical  Data  MI  9  3.5  Dimensions   Figure  2:  Dim ensions  of  Se nsing  Head   Standard cable length 1 m (3 ft.) MID/MIC: Ø 5 mm (0.2 in) MIH: Ø 3 mm (0.12 in) 2 mounting holes, Ø 4.5 mm ( 0.17 in ) …

  • RayTek MI Miniature Infrared Sensor — page 18

    Technical  Data  10  MI   Figure  3:  Dim ensions  of  Ele ctronic  Box  3.6  Scope  of  Delivery  The  scope  of  delivery  includes  the  following:  • Sensing  head  • 1  m  head  cable  • Mounting  nut  • Electronic  box  • Operating  in …

  • RayTek MI Miniature Infrared Sensor — page 19

    Basics  MI  11  4  Basics  4.1  Measur ement  of  Infr ared  Temperature  All  surfaces  emit  infrared  rad iation  The  intensity  of  this  infr ared  radiation  changes  according  to  the  temperatur e  of  the  object.  Depending  on  the  materia …

  • RayTek MI Miniature Infrared Sensor — page 20

    Basics  12  MI  4.2  Emissivity  of  Target  Object  To  determine  the  emissivity  of  the  target  object  refer  to  section  12.1  Determination  of  Emissivity  on  page  81.  If  emissivity  is  low,  measured  results  could  be  falsified …

  • RayTek MI Miniature Infrared Sensor — page 21

    Basics  MI  13  4.5  Electric al  Interference  To  minimize  electrical  or  electromagnetic  interference  or  “noise”  be  aware  of  the  following:  • Mount  th e  unit  as  far  away  as  possible  from  potential  sources  of  electrical  in …

  • RayTek MI Miniature Infrared Sensor — page 22

    Installation  14  MI  5  Installation  5.1  Positio ning  Sensor  location  depends  on  the  application.  Before  deciding  on  a  location,  you  need  to  be  aware  of  the  ambient  temp erature  of  the  location,  the  atmospheric  quality  of …

  • RayTek MI Miniature Infrared Sensor — page 23

    Installation  MI  15   Figure  4:  Proper  Sensor  Placement  5.2  Wiring  5.2.1  Sensor  Head  Cable  The  manufacturer  preinstall’s  the  sensor  head  cable  between  sensor  head  and  electronic  box.  It  may  be  shortened  but  not  leng …

  • RayTek MI Miniature Infrared Sensor — page 24

    Installation  16  MI  5.2.2  Cable  for  Power  Supply  and  Outputs  You  need  to  connect  the  power  supply  (12  to  26  VDC)  and  the  signal  output  wires.  Use  only  cable  with  outside  diameter  from  4  to  6  mm  (0.16  …

  • RayTek MI Miniature Infrared Sensor — page 25

    Installation  MI  17   Figure  6:  Connecting  of  Cables  to  the  Electronic  Box  5.  Put  the  following  on  the  cable  (as  shown  in  the  figure  above):  the  cap  (1),  the  plastic  compression  fitting  (2),  the  rubber  washer …

  • RayTek MI Miniature Infrared Sensor — page 26

    Installation  18  MI  5.3  Outputs   Figure  7:  Signal  Outputs  and  Power  Supply  Electronic Box Signal Output Head Ambient Temp. or Alarm Power 0 to 5 V J or K 0 to 5 V 4 to 20 m A 0 to 20 m A 12 to 26 VDC …

  • RayTek MI Miniature Infrared Sensor — page 27

    Installation  MI  19  5.3.1  Signal  Output  Figure  8:  Wiring  of  the  Signal  Output  (mA  or  V)  The  signal  output  can  be  configured  either  as  current  or  as  voltage  output.  The  minimum  load  impedance  for  the  0  to  …

  • RayTek MI Miniature Infrared Sensor — page 28

    Installation  20  MI  5.3.2  Head  Ambient  Temp.  /  Alar m  Output  This  output  can  be  configured  either  as  output  for  the  head  ambient  temperature  (default  configuration)  or  as  an  alarm  output.  Figure  10:  Wiring  the  Outpu …

  • RayTek MI Miniature Infrared Sensor — page 29

    Installation  MI  21  You  may  use  a  solid  state  relay  for  the  alarm  output.  The  outp ut  is  short  circuit  resistant  with  100 Ω out put  imped ance.  The  alarm  output  is  only  enabled  through  the  DataTemp  MultiDrop  soft …

  • RayTek MI Miniature Infrared Sensor — page 30

    Installation  22  MI  5.3.3  Thermocouple  Output  If  you  are  using  a  J ‐ or  K ‐ thermocouple  you  must  inst all  a  compensation  cable.  The  cable  is  available  as  an  accessory  (XXXCI1CB25  for  Type  J,  XXXCI2CB25  fo r  Type …

  • RayTek MI Miniature Infrared Sensor — page 31

    Installation  MI  23  5.4  Inputs  FTC  The  three  inputs  FTC1,  FTC2,  and  FTC3  are  used  for  the  external  control  of  the  unit.  All  input  funct ions  are  enabled  through  the  Data Temp  MultiDrop  software  only,  see  the  sof …

  • RayTek MI Miniature Infrared Sensor — page 32

    Installation  24  MI  5.4.1  Emissivity  Setting  (a nalog  contr olled)  The  input  FTC1  can  be  configured  to  accept  an  analog  voltage  signal  (0  to  5  VDC)  to  provide  real  time  emissivi ty  setting.  The  following  table  show s ? …

  • RayTek MI Miniature Infrared Sensor — page 33

    Installation  MI  25  5.4.2  Emissivity  Setting  ( digital  controlle d)  The  sensor’s  electronics  contains  a  table  with  8  pre ‐ installed  settings  for  emissivity.  To  activate  the se  emissi vity  settings,  you  need  to  have  the  inputs …

  • RayTek MI Miniature Infrared Sensor — page 34

    Installation  26  MI  5.4.3  Ambient  Background  Temperature  Compensatio n  The  sensor  is  capable  of  improving  the  accuracy  of  target  temperature  me asurements  by  taking  into  account  the  ambient  or  background  temperature.  This  featu re …

  • RayTek MI Miniature Infrared Sensor — page 35

    Installation  MI  27  • Ambient  background  temperatu re  compensation  from  a  second  temperature  sensor  (infrared  or  contact  te mperature  sensor)  ensures  extremely  accurate  results.  For  example,  the  outpu t  of  the  second  unit,  set  fo …

  • RayTek MI Miniature Infrared Sensor — page 36

    Installation  28  MI  5.4.4  Trigger  and  Hold  Function  The  FTC3  input  can  be  used  as  ex ternal  trigger  in  conjunction  with  the  software  trigger  mo de  setting  “Trigger”  or  “Hold”.   Figure  17:  Wiring  of  FTC3  as ? …

  • RayTek MI Miniature Infrared Sensor — page 37

    Installation  MI  29  Hold:  This  mode  acts  as  external  generated  hold  function.  A  transition  at  the  input  FTC3  from  logical  high  level  to ward  logical  low  level  will  transfer  the  current  temperature  toward  the  output.  …

  • RayTek MI Miniature Infrared Sensor — page 38

    Installation  30  MI  5.5  Connec ting  to  the  PC  via  RS232  The  RS232  interface  comes  with  each  model.  Connect  a  single  unit  with  a  RS232  COM  port  by  using  the  connection  kit  RAYMISCON.  Figure  20:  Connecting  the  …

  • RayTek MI Miniature Infrared Sensor — page 39

    Installation  MI  31  5.6  Installin g  of  Multiple  Sensors  vi a  RS485  The  distance  between  the  sensor  and  a  computer  can  be  up  to  1200  m  (4000  ft.)  via  RS485  interface.  This  allows  ample  distance  from  the  harsh  …

  • RayTek MI Miniature Infrared Sensor — page 40

    Installation  32  MI  For  an  installation  of  two  or  more  sensor s  in  a  RS485  network,  each  sensor  is  wired  parallel  to  the  othe rs.  You  may  connect  up  to  32  units.  Make  sure  to  deactiva te  the  preset  shunt  …

  • RayTek MI Miniature Infrared Sensor — page 41

    Installation  MI  33  Go  to  the  menu  <Setup>  <Sensor  Setup>,  and  then  select  the  register  <Advanced  Setup>.  Use  <Polling  Address>  for  selecting  the  requested  address.   Figure  23:  Address  Settin g  Step ‐ by ? …

  • RayTek MI Miniature Infrared Sensor — page 42

    Operation  34  MI  6  Operation  Once  you  have  the  sensor  positioned  and  connected  properly,  the  system  is  ready  for  continuous  operation.  The  operation  of  the  sensor  can  be  done  by  means  of  the  built ‐ in  control  …

  • RayTek MI Miniature Infrared Sensor — page 43

    Operation  MI  35  6.2  Setting  the  Output  Jumper  In  addition  to  the  set  mode  in  the  unit,  see  section  6.3  Setting  of  Modes ,  on  page  36,  the  unit’s  outputs  must  be  configured  by  switching  the  <Ou tput > ? …

  • RayTek MI Miniature Infrared Sensor — page 44

    Operation  36  MI  6.3  Setting  of  Modes  You  can  easily  determine  the  unit’s  mode  or  parameter  by  doing  the  following:  Press  the  <Mode>  butto n  until  the  symbol  for  the  actual  set  mode  appears  in  the  displa …

  • RayTek MI Miniature Infrared Sensor — page 45

    Operation  MI  37  Display  Mode Range C  Target Temperature* (effected by signal processing) not adjustable A Head Ambient Temper ature not adjustable T Target Temperature (not effected by signal processing) not adjustable Output Mode mV mV output (default) TCK thermocouple type K output TCJ thermocouple type J output 4 — 20 4 — 20 …

  • RayTek MI Miniature Infrared Sensor — page 46

    Operation  38  MI  6.4  Post  Processing  6.4.1  Averaging  Averaging  is  used  to  smooth  the  output  signal.  The  signal  is  smoothed  depending  on  the  defined  time  basis,  whereby  the  outp ut  signal  track s  the  detector  signal  …

  • RayTek MI Miniature Infrared Sensor — page 47

    Operation  MI  39  object),  the  output  signal  reaches  only  90%  magnitude  of  the  actual  object  temperatur e  after  the  defined  average  time.  …

  • RayTek MI Miniature Infrared Sensor — page 48

    Operation  40  MI  6.4.2  Peak  Hold  The  output  signal  follows  the  object  temperature  until  a  maximum  is  found.  Once  the  hold  time  is  exceeded  the  output  signal,  tracks  and  output  the  act ual  object  temperature  and  …

  • RayTek MI Miniature Infrared Sensor — page 49

    Operation  MI  41  6.4.3  Valley  Hold  The  output  signal  follows  the  object  temper ature  until  a  mini mum  is  found.  Once  the  hold  time  is  exceeded  the  output  signal,  tracks  and  output  the  act ual  object  temperature  and …

  • RayTek MI Miniature Infrared Sensor — page 50

    Operation  42  MI  6.4.4  Advanced  Peak  Hold  This  function  searches  the  sensor  signal  for  a  local  maximu m  (peak)  and  writes  this  value  to  the  output  until  a  new  local  maxi mum  is  found.  Before  the  algorithm  restar …

  • RayTek MI Miniature Infrared Sensor — page 51

    Operation  MI  43  6.4.5  Advanced  Valley  Hold  This  function  works  similar  to  the  advanced  peak  hold  function,  except  it  will  search  the  signal  for  a  local  minimum.  6.4.6  Advanced  Peak  Hold  with  Averaging  The  output ? …

  • RayTek MI Miniature Infrared Sensor — page 52

    Operation  44  MI  6.5  Factory  Defa ults  For  activating  the  unit’ s  factory  default  value s  press  the  <Mode/Up>  buttons  on  the  electronic  board  simultaneously.  The  factory  default  values  are  to  be  found  in  section  11 …

  • RayTek MI Miniature Infrared Sensor — page 53

    Options  MI  45  7  Options  Options  are  items  tha t  are  factory  installed  and  must  be  specified  at  time  of  order.  The  following  are  available:  • Longer  cable  lengths:  3  m  /  9.8  ft.  (…CB3),  8  m  /  26.2  ft …

  • RayTek MI Miniature Infrared Sensor — page 54

    Accessories  46  MI  8  Accessories  8.1  Overvi ew  A  full  range  of  accessories  for  various  applicatio ns  and  industrial  environme nts  are  available.  Accessories  include  items  that  may  be  ordered  at  any  time  and  added  on ‐ sit …

  • RayTek MI Miniature Infrared Sensor — page 55

    Accessories  MI  47   Figure  30:  Standard  Mounting  Accessories  Sensing Head Adjustable Bracket Fixed Bracket Electronic Box …

  • RayTek MI Miniature Infrared Sensor — page 56

    Accessories  48  MI  8.2  Adjustable  Mountin g  Bracket   Figure  31:  Adjustable  Mo unting  Bracket  (XXXMIACAB)  …

  • RayTek MI Miniature Infrared Sensor — page 57

    Accessories  MI  49  8.3  Fixed  Moun ting  Bracket   Figure  32:  Fixed  Mounting  Bracket  (XXXMIACFB)  …

  • RayTek MI Miniature Infrared Sensor — page 58

    Accessories  50  MI  8.4  Air  Purg ing  Jacket  The  air  purge  jacket  is  used  to  keep  dust,  moi sture,  airborne  particles,  and  vapors  away  from  the  sensing  he ad.  Clea n,  oil  free  air  is  recommended.  The  air  purge  jac …

  • RayTek MI Miniature Infrared Sensor — page 59

    Accessories  MI  51   Figure  34:  Mounting  the  Air  Purge  Jacket  1.  Remove  the  sensor  (1) and  cable  from  the  electro nic  box  by  disconnecting  the  wires  from  the  electronic  box.  2.  Open  the  Air  Purging  Jacket  (3,  …

  • RayTek MI Miniature Infrared Sensor — page 60

    Accessories  52  MI  8.5  Air  Co oling  System  The  sensing  head  can  operate  in  ambient  temperatures  up  to  200°C  (392°F)  with  the  air ‐ cooling  system.  The  air ‐ cooling  sy stem  comes  with  a  T ‐ adapter  including  0.8  m ? …

  • RayTek MI Miniature Infrared Sensor — page 61

    Accessories  MI  53   Figure  37:  Maximum  Ambient  Temperature  depending  on  Air  Flow  and  Hose  Length  Note :  “Hose  Length“  is  the  length  of  hose  exposed  to  high  ambient  temperature  (no t  the  overall  length  of  the  …

  • RayTek MI Miniature Infrared Sensor — page 62

    Accessories  54  MI   Figure  38:  Air  Cooling  System:  Purgi ng  Jacket  The  Air  Cooling  Sys tem  consists  of:  (1)  sensing  head  (2)  inner  plastic  fitti ng  (air  purging  jacket)  (3)  front  part  of  the  air ‐ purging  jacket  (4 …

  • RayTek MI Miniature Infrared Sensor — page 63

    Accessories  MI  55   Figure  39:  Air  Cooling  System:  T ‐ Adapter  …

  • RayTek MI Miniature Infrared Sensor — page 64

    Accessories  56  MI   Figure  40:  Dimensions  of  Air  Cooling  System  Hose: inner Ø : 9 mm (0.35 in) outer Ø : 12 mm (0.47 in) …

  • RayTek MI Miniature Infrared Sensor — page 65

    Accessories  MI  57  8.6  Right  Angle  Mirror  The  right  angle  mirror  comes  in  two  different  versions:  XXXMIACRAJ  right  angle  mirror  as  accessory  for  air  purging  jacket  or  air  cooling  system  XXXMIACRAJ1  right  angle  mirror …

  • RayTek MI Miniature Infrared Sensor — page 66

    Accessories  58  MI  8.7  Box  Lid   Figure  43:  Box  Lid  with  Vi ew  Port  for  Post  Ins tallations  (XXXMIACV)  …

  • RayTek MI Miniature Infrared Sensor — page 67

    Accessories  MI  59  8.8  Protective  Window  The  protective  windo w  can  be  used  to  protect  the  sensing  head  from  dust  and  other  contam ination.  This  should  be  applied  especially  for  sensors  without  a  lens.  These  are  all …

  • RayTek MI Miniature Infrared Sensor — page 68

    Maintenance  60  MI  9  Maintenance  Our  sales  representatives  and  cust omer  service  are  always  at  your  disposal  for  questi ons  regarding  application  assistance,  calibration,  repair,  and  solutions  to  specific  problems.  Please  contact  y …

  • RayTek MI Miniature Infrared Sensor — page 69

    Maintenance  MI  61  9.2  Fail ‐ Safe  Operat ion  The  Fail ‐ Safe  system  is  designed  to  alert  the  operator  and  provide  a  safe  output  in  case  of  an y  syste m  failure.  The  sensor  is  designed  to  shutdown  the  process  in …

  • RayTek MI Miniature Infrared Sensor — page 70

    Maintenance  62  MI  Error  Codes  via  RS232/485  Output Error Code Description T—— Invalid temperature reading T>>>>>> Temperature over range T<<<<<< Temperature under range Table  8:  Error  Codes  (v ia  RS232/485)  Error  Codes  for  the  LCD  Display …

  • RayTek MI Miniature Infrared Sensor — page 71

    Maintenance  MI  63  9.3  Sensing  Head  Exchange  Sensing  heads  and  electronic  b oxes  can  only  be  interchanged  in  accordance  to  the  following  ta ble!  MID02 MIC02 MI D10 MIC10 MIH10 MID20 MIC20 MIH20 MID02 x x x x MIC02 x x x x MID10 x x x x MIC10 x x x x M I H 1 0 x M …

  • RayTek MI Miniature Infrared Sensor — page 72

    Maintenance  64  MI  <Down/Up>  button s.  Activa te  your  settings  by  pressing  the  <Mode>  button.   Figure  45:  Sensing  Head  Calibration  Data  printed  on  the  Cable  (e.g.  Head  with  two  blocks  of  4  numbers)  For  MIH ? …

  • RayTek MI Miniature Infrared Sensor — page 73

    Software  MI  65  10  Software  For  use  with  RS232  or  RS485  models,  DataTemp  MultiDrop  software  allows  access  to  the  extended  digital  features  of  the  MID  with  an  easy ‐ to ‐ use  interface.  Compatible  with  WIN  95/98/NT/2000/ …

  • RayTek MI Miniature Infrared Sensor — page 74

    Programming  Guide  66  MI  11  Programming  Guide  This  section  explains  th e  sensor’s  communication  protocol.  A  protocol  is  the  set  of  commands  that  define  all  possible  communications  with  the  sensor.  The  commands  are  describ …

  • RayTek MI Miniature Infrared Sensor — page 75

    Programming  Guide  MI  67  11.1  Transf er  Modes  The  unit’s  serial  interface  is  either  RS232  or  RS485,  depending  on  the  model.  Settings:  transfe r  rate:  9.6  kBaud,  8  data  bits,  1  stop  bit,  no  parity,  flow  control: ? …

  • RayTek MI Miniature Infrared Sensor — page 76

    Programming  Guide  68  MI  11.2  Gener al  Command  Structure  Requesting  a  paramete r  (Poll  Mode)  ?ECR  “?“  is  the  command  for  “Request“   “E“  is  the  parameter  req uested   “CR“  (carriage  retu rn,  0Dh)  is  closing  …

  • RayTek MI Miniature Infrared Sensor — page 77

    Programming  Guide  MI  69  After  switc hing  the  power  to  “ON“,  the  device  is  sending  a  notification:  #XICRLF  “#“  is  the  parameter  for  “Notification“   “XI“  is  the  value  for  the  notifi cation  (her e  “XI“;  …

  • RayTek MI Miniature Infrared Sensor — page 78

    Programming  Guide  70  MI  11.4  Device  Setup  11.4.1  Temperat ure  Calcula tion  U=C  unit  for  the  tempe rature  value  E=0.950  Emissivity  setting  (Cau tion:  according  to  the  sett ings  for  “ES”,  see  section  11.4.2  Emissiv ity  Setting ? …

  • RayTek MI Miniature Infrared Sensor — page 79

    Programming  Guide  MI  71  There  are  eight  ent ries  possible  for  emissivity  setting  (1)  and  a  related  set  point  (threshold)  (2).  To  be  able  to  write  or  read  the se  values,  use  the  following  command s:  EP=2  set  poi …

  • RayTek MI Miniature Infrared Sensor — page 80

    Programming  Guide  72  MI  11.4.3  Post  Processing  The  following  parameters  can  be  set  to  deter mine  the  post  processing  mode,  see  section  6.4  Post  Proc essing  on  page  38.  P=5  peak  hold,  hol d  time:  5  s  F=12.5  vall …

  • RayTek MI Miniature Infrared Sensor — page 81

    Programming  Guide  MI  73  11.6  Device  Con trol  11.6.1  Output  for  the  Ta rget  Temperature  The  signal  output  can  be  set  to  4  –  20  mA,  0  –  20  mA  or  mV.  If  current  output  is  activated,  the  output  can  …

  • RayTek MI Miniature Infrared Sensor — page 82

    Programming  Guide  74  MI  XF  factory  default  values  will  be  set  11.6.5  Lock  Mode  The  access  to  the  unit  is  possible  via  serial  interface  (software)  and  via  the  direct  user  input  (mode  butto ns,  LCD  display).  It ? …

  • RayTek MI Miniature Infrared Sensor — page 83

    Programming  Guide  MI  75  AC=2  compensation  with  an  extern al  voltage  signa l  at  the  analog  input  FTC2  (0  V  –  5V  corresponds  to  low  end  and  high  end  of  temperature  range),  current  ambient  temperature  is  readable ? …

  • RayTek MI Miniature Infrared Sensor — page 84

    Programming  Guide  76  MI  11.7  Multip le  Units  (RS485  Multidrop  Mode)  Up  to  32  units  can  be  connected  within  a  RS485  networ k,  see  section  5.6  Installing  of  Mult iple  Sensors  via  RS485  on  page  31.  To  direct  a  …

  • RayTek MI Miniature Infrared Sensor — page 85

    Programming  Guide  MI  77  11.8  Command  Set  Description Char Format P B S Legal values Factory default LCD Poll parameter ? ?X/?XX * ?T Set parameter = X/XX=… * E=0 . 85 Set parameter without EEPROM storage # X/XX# * E#0.85 Multidrop addressing 001?E * * answer: 001!E0.95 Error message * *Syntax error Acknowledge message …

  • RayTek MI Miniature Infrared Sensor — page 86

    Programming  Guide  78  MI  Description Char Format P B S Legal values Factory default LCD Source: emissivity / setpoint for alarm output ES X * * I=constant number (E=0.950) E=external analogous input FTC1 D= E/XS digital selected FTC1-3 I Presel. emissivity value EV n.nnn * * 0.100 — 1. 100 Valley hold time(4) F nnn.n * * * 0.000 — 99 …

  • RayTek MI Miniature Infrared Sensor — page 87

    Programming  Guide  MI  79  Description Char Format P B S Legal values Factory default LCD Presel. setpoint / relay function SV nnn.n (1) Target temperature T nnn.n * * in current scale (°C / °F) Temperature unit U X * * * C / F C U Poll / Burst mode V X * * P = poll B = burst Poll mode Burst string contents X$ * Multidrop address XA …

  • RayTek MI Miniature Infrared Sensor — page 88

    Programming  Guide  80  MI  (3)  $  =  UTQE  (4)  setting  average  /  peak  /  valley  /  advanced  hold  cancels  all  other  hold  modes  (6)  LT:  23°C  (73°F)  (7)  LT:  500°C  (932°F)  (8)  LT:  0°C  (32°F)  (9)  XZ  =  0123 …

  • RayTek MI Miniature Infrared Sensor — page 89

    Appendix  MI  81  12  Appendix  12.1  Determ ination  of  Emissivity  Emissivity  is  a  measure  of  an  object’s  ability  to  absorb  and  emit  infrared  energy.  It  can  have  a  value  between  0  and  1.0.  For  example  a  mirror  …

  • RayTek MI Miniature Infrared Sensor — page 90

    Appendix  82  MI  0.95.  Finally,  measure  the  te mperature  of  an  adjacent  area  on  the  object  and  adjust  the  em issivity  unt il  the  sa me  tempera ture  is  reached.  This  is  the  correct  emissivity  for  the  measured  material . ? …

  • RayTek MI Miniature Infrared Sensor — page 91

    Appendix  MI  83  12.2  Typical  Emissivity  Va lues  The  following  table  provides  a  brief  reference  guide  for  determining  emissivity  and  can  be  used  when  one  of  the  above  methods  is  not  practical.  Emissivity  value s  shown ? …

  • RayTek MI Miniature Infrared Sensor — page 92

    Appendix  84  MI  M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Aluminum Unoxidized 0.02-0.2 0.02-0.2 0.02-0.1 Oxidized 0.2-0.4 0.2-0.4 0. 2-0.4 Alloy A3003, Oxidized 0.4 0.4 0.3 Roughened 0.1-0.4 0.1-0.4 0.1-0.3 Polished 0.02-0.1 0.02-0.1 0.02-0.1 Brass Polished 0.01-0.05 0.01-0.05 0.01-0.05 Burnished 0.3 0.3 0.3 Oxidized 0.5 0.5 …

  • RayTek MI Miniature Infrared Sensor — page 93

    Appendix  MI  85  Polished 0.05-0.2 0.05-0.2 0.05-0.1 Rough 0.4 0.4 0. 4 Oxidized 0.2-0.7 0.2-0.7 0. 2-0.6 Magnesium 0.03-0.15 0.03-0.15 0.02-0.1 Mercury 0.05-0.15 0.05-0.15 0.05-0.15 Molybdenum Oxidized 0.3-0.7 0.3-0.7 0. 2-0.6 Unoxidized 0.1-0.15 0.1-0.15 0.1 Monel (Ni-Cu) 0.1-0.5 0.1-0.5 0.1-0.14 Nickel Oxidized 0.3-0.6 0.3-0.6 0. 2-0.5 …

  • RayTek MI Miniature Infrared Sensor — page 94

    Appendix  86  MI  N ON -M ETALS Material Emissivity 3.9 µm 5 µm 8 – 14 µm Asbestos 0.9 0.95 Asphalt 0.95 0.95 Basalt 0.7 0.7 Carbon Unoxidized 0.8-0.9 0.8-0.9 Graphite 0.7-0.9 0.7-0.8 Carborundum 0.9 0.9 Ceramic 0.8-0.95 0.95 Clay 0.85-0.95 0.95 Concrete 0.9 0.95 Cloth 0.95 0.95 Glass Plate 0.98 0.85 “Gob” 0.9 — Gravel 0.95 0.95 …

  • RayTek MI Miniature Infrared Sensor — page 95

    Index  MI  87  Index  Accessories 46 Accuracy 4 Air pressure 12 Air Purge 46 Air Purge Jacket 12 Ambient Temperature 12 Average 60 Control Panel 34, 59 Emissivity 5, 11, 12, 60, 80, 82, 84, 85 Loop impedance 19 Maintenance 60 Mirror 57, 80 Network 32 Noise 13 Optical Resolution 6 Power Supply 60 Repeatability 4 Response Time 4 Sensing H …

Понравилась статья? Поделить с друзьями:
  • Rc800 dinitrol инструкция по применению
  • Raytek mi sensor инструкция на русском
  • Racer panther 300 инструкция по эксплуатации
  • Raymarine dragonfly 7 pro инструкция на русском языке
  • Rc weather station national geographic инструкция на русском