Тестер компонентов lcr t4 инструкция

Тестер LCR T4 – это универсальное устройство для измерения параметров электронных компонентов, таких как резисторы, конденсаторы и индуктивности. Он может использоваться как для профессиональной работы в лаборатории, так и для домашнего использования.

Но чтобы правильно использовать LCR T4, сначала необходимо настроить его. Настройка тестера может показаться сложной, особенно для начинающих, но с помощью нашей подробной инструкции вы сможете настроить LCR T4 шаг за шагом без особых проблем.

Настройка тестера LCR T4 состоит из нескольких этапов, начиная от подготовки устройства, калибровки, настройки языка и завершая настройкой напряжения измерения. Каждый этап имеет свои особенности и требует определенных навыков и знаний.

В этой статье мы рассмотрим каждый этап настройки тестера LCR T4 подробно и шаг за шагом, чтобы вы могли успешно настроить свой тестер и начать использовать его для измерения параметров электронных компонентов.

Содержание

  1. Подготовка к работе с тестером
  2. Шаг 1: Проверьте комплектацию тестера
  3. Шаг 2: Перезарядите батарею тестера
  4. Шаг 3: Подключите тестер к компьютеру
  5. Шаг 4: Установите ПО для работы с тестером
  6. Шаг 5: Ознакомьтесь с инструкцией к тестеру
  7. Подключение тестерa LCR T4 к измерительным объектам
  8. Подключение к резистору
  9. Подключение к катушке индуктивности
  10. Подключение к конденсатору
  11. Установка параметров тестирования
  12. 1. Определение типа компонента
  13. 2. Установка режима тестирования
  14. 3. Установка пороговых значений
  15. 4. Проведение тестирования
  16. Запуск и получение результатов измерений
  17. Запуск тестера LCR T4
  18. Получение результатов измерений
  19. Обработка результатов измерений и их анализ
  20. 1. Вычитание сопротивления проводов и элементов цепи
  21. 2. Анализ результатов измерений емкости
  22. 3. Анализ результатов измерений индуктивности
  23. Вопрос-ответ
  24. Какие функции есть у тестера LCR T4?
  25. Как подключить тестируемый элемент к LCR T4?
  26. Как выбрать режим измерения на LCR T4?
  27. Как провести калибровку на LCR T4?
  28. Можно ли использовать LCR T4 для проверки конденсаторов в цепи?
  29. Как работает функция зарядки и разрядки конденсатора на LCR T4?
  30. Как сделать измерения более точными на LCR T4?

Подготовка к работе с тестером

Шаг 1: Проверьте комплектацию тестера

Перед началом работы необходимо убедиться, что комплектация тестера полная. В состав должны входить: сам тестер LCR T4, кабель для подключения к ПК, чехол для хранения и использования и инструкция на русском языке.

Шаг 2: Перезарядите батарею тестера

Если тестер используется уже некоторое время, то необходимо проверить заряд батареи. В случае необходимости перезарядите ее, используя кабель USB.

Шаг 3: Подключите тестер к компьютеру

Следующим шагом будет подключение тестера к компьютеру. Для этого следует использовать кабель, который входит в комплект. Подключение производится через USB-порт на компьютере.

Шаг 4: Установите ПО для работы с тестером

Для работы с тестером необходимо установить на компьютер специальное ПО. В комплекте с тестером должен быть диск с необходимым программным обеспечением. Если диска нет, то можно скачать ПО с официального сайта производителя.

Шаг 5: Ознакомьтесь с инструкцией к тестеру

Необходимо ознакомиться с инструкцией перед началом работы с тестером. Инструкция должна содержать информацию об использовании различных функций и режимов работы тестера. Важно прочитать инструкцию до начала работы, чтобы избежать ошибок и неправильной работы.

Подключение тестерa LCR T4 к измерительным объектам

Подключение к резистору

Для подключения тестера LCR T4 к резистору необходимо:

  • Использовать две красные и две черные зажимающие щипцы;
  • Подключить один красный зажим к правому контакту, второй к левому контакту;
  • Подключить один черный зажим к правому контакту, второй к левому контакту.

Подключение к катушке индуктивности

Для подключения тестера LCR T4 к катушке индуктивности необходимо:

  1. Использовать две красные и две черные зажимающие щипцы;
  2. Подключить один красный зажим к правому контакту, второй к левому контакту;
  3. Подключить один черный зажим к правому контакту, второй к левому контакту.

Подключение к конденсатору

Для подключения тестера LCR T4 к конденсатору необходимо:

  • Использовать два зажимающих щипца: один черный и один красный;
  • Подключить красный щипец к «CAP+» и черный щипец к «CAP-«;
  • Прибор замеряет ёмкость конденсатора.
Вход тестера Объект Клемма
L Катушка индуктивности Плюс и минус
C Конденсатор CAP+ и CAP-
R Резистор Правый и левый контакты

Установка параметров тестирования

1. Определение типа компонента

Перед началом тестирования необходимо определить тип компонента. Для этого используйте справочник, который поставляется вместе с тестером LCR T4. Справочник содержит информацию о характеристиках различных типов компонентов, включая индуктивность, емкость и сопротивление.

2. Установка режима тестирования

После определения типа компонента необходимо установить режим тестирования. Это можно сделать, нажав на кнопку «Mode» на панели управления тестером. На экране появится список режимов тестирования, таких как емкость, индуктивность, сопротивление и т.д. Выберите нужный режим и подтвердите выбор кнопкой «Enter».

3. Установка пороговых значений

Для более точного тестирования компонента можно установить пороговые значения. Они определяют диапазон значений, в которых должны находиться измеряемые параметры. Например, если мы хотим проверить конденсатор емкостью 10 мкФ, мы можем установить пороги 9.5 мкФ и 10.5 мкФ.

4. Проведение тестирования

После установки всех параметров можно приступить к тестированию. Подключите компонент к тестеру и нажмите кнопку «Test». Тестер автоматически определит параметры компонента и выведет их на экран.

Запуск и получение результатов измерений

Запуск тестера LCR T4

Перед запуском тестера убедитесь в правильном подключении проводов и смены параметров, если необходимо. Затем включите прибор, нажав на кнопку «Power».

Далее в меню выберите нужный тип измерения: сопротивление, ёмкость, индуктивность.

Получение результатов измерений

Проверьте, что измеряемый элемент правильно подключен, и нажмите на кнопку «Measurement».

Результаты измерений отобразятся на экране тестера. В зависимости от типа измерения, вы сможете увидеть значение сопротивления, ёмкости или индуктивности элемента.

Не забывайте, что значения могут быть в различных единицах измерения, поэтому прежде чем произвести сравнение, вам может потребоваться выполнить перевод в нужные единицы.

Если вы хотите сохранить результаты, нажмите на кнопку «Hold», прежде чем завершить измерение. Тогда последнее измеренное значение будет сохранено на экране до тех пор, пока вы не проведете новое измерение.

Теперь, когда вы знаете, как запустить тестер и получить результаты измерения, вы можете использовать его для работы с электроникой и схемотехникой.

Обработка результатов измерений и их анализ

1. Вычитание сопротивления проводов и элементов цепи

При измерении сопротивления элементов цепи тестером LCR T4 необходимо учитывать сопротивление проводов, которые подключаются к элементам. Для этого сначала необходимо измерить сопротивление провода, который будет использоваться при измерении элементов, а затем провести вычитание этого значения из результатов измерения сопротивления элементов.

2. Анализ результатов измерений емкости

При измерении емкости элементов цепи тестером LCR T4 необходимо учитывать, что результат измерения зависит от частоты, на которой происходит измерение. При измерении ёмкости электролитических конденсаторов, которые имеют высокую внутреннюю потерю энергии, необходимо выбирать частоту измерения в 100 Гц.

Для анализа результатов измерения ёмкости элементов цепи можно сравнить полученное значение с номинальным значением емкости, указанным на корпусе элемента. Если значение измеренной емкости превышает номинальное на 20% или более, это может указывать на неисправность элемента.

3. Анализ результатов измерений индуктивности

При измерении индуктивности элементов цепи тестером LCR T4 необходимо учитывать, что результат измерения зависит от частоты, на которой происходит измерение. При измерении индуктивности катушек индуктивности, которые имеют высокую внутреннюю потерю энергии, необходимо выбирать частоту измерения в 100 Гц.

Для анализа результатов измерения индуктивности элементов цепи можно сравнить полученное значение с номинальным значением индуктивности, указанным на корпусе элемента. Если значение измеренной индуктивности превышает номинальное на 20% или более, это может указывать на неисправность элемента.

Вопрос-ответ

Какие функции есть у тестера LCR T4?

Тестер LCR T4 может измерять индуктивность (L), емкость (C) и сопротивление (R) с высокой точностью. Также он может определять сопротивление ESR (эквивалентный последовательный резистор), который является характеристикой качества конденсатора. Кроме того, тестер имеет функцию автоматической калибровки и может работать в режиме зарядки и разрядки конденсатора.

Как подключить тестируемый элемент к LCR T4?

Тестируемый элемент подключается к соответствующим контактам на корпусе LCR T4. Обычно это три контакта: «GND» (земля), «V+» (плюсовой полюс) и «V-» (минусовой полюс). Подключение зависит от типа элемента, поэтому перед тестом необходимо убедиться в правильности подключения и сопротивлении элемента, чтобы избежать повреждения тестера.

Как выбрать режим измерения на LCR T4?

Для выбора режима необходимо нажать кнопку «FUNC» на тестере. Кнопка находится на передней панели и имеет надпись «FUNC». После нажатия кнопки можно выбрать нужный режим измерения, нажимая на цифровые кнопки ниже экрана. Некоторые режимы могут иметь два или более вариантов, которые также можно выбрать нажатием соответствующей кнопки. После выбора режима можно начинать измерения.

Как провести калибровку на LCR T4?

Для калибровки необходимо нажать кнопку «FUNC» и выбрать пункт «CAL» на экране. Далее следуйте инструкциям на экране, которые показывают, какие элементы нужно подключать к тестеру. После подключения элементов нажмите «OK» и дождитесь завершения калибровки. Калибровка необходима для повышения точности измерений и должна проводиться регулярно.

Можно ли использовать LCR T4 для проверки конденсаторов в цепи?

Нет, не рекомендуется. Проверка конденсаторов в цепи может повредить тестер и/или цепь. Для проверки конденсаторов в цепи рекомендуется использовать другие методы, например, осциллограф или замену элементов на известные хорошо работающие.

Как работает функция зарядки и разрядки конденсатора на LCR T4?

Функция зарядки/разрядки конденсатора на тестере LCR T4 позволяет измерять емкость конденсатора с переменным напряжением и подавать графическое представление зависимости зарядки/разрядки. Для этого необходимо подключить конденсатор к соответствующим контактам на LCR T4 и выбрать соответствующий режим измерения. После выбора режима можно начинать зарядку и разрядку конденсатора и наблюдать график зависимости напряжения от времени.

Как сделать измерения более точными на LCR T4?

Для повышения точности измерения на тестере LCR T4 необходимо проводить калибровку и поддерживать его в хорошем состоянии. Поддерживайте тестер в чистоте и избегайте попадания влаги на его корпус. Также, если это возможно, подключайте элементы таким образом, чтобы сопротивление соединительных проводов было минимальным. И, наконец, выбирайте правильные параметры измерения в зависимости от элементов, которые вы тестируете.

Небольшой обзор универсального тестера радиоэлементов.
Мой знакомый приобрёл себе подобный тестер модели Т3. Я позавидовал и решил прикупить себе немного другой модели, более дешёвый Т4. Эх, такую б игрушку да в моё детство!
Обязательно проверю, насколько точно измеряет.

Для покупки тестера я использовал скидку. Если у вас есть поинты, вы тоже можете их использовать.
Цена за время доставки не изменилась.

Это первый опыт получения бестрекового товара из этого магазина. Печальный опыт неполучения дешёвых товаров из другого китайского магазина я уже имею (как и многие). Поэтому и волновался. Товар был отправлен без трека (уже писал). Но всё обошлось. «Игрушку» я получил, чему был очень рад. Этот магазин не подвёл. А со скидкой получилось даже немного дешевле.
Доставили быстро, чуть дольше трёх недель.
Как обычно сначала смотрим, в каком виде всё пришло.
Стандартный пакет, «пропупыренный» изнутри.

Девайс был дополнительно укутан в несколько защитных слоёв.

И стекло цело и сам работает.

Расстроило только одно. Дисплей был (почему-то) без защитной плёнки. Стекло немного поцарапано.
Это универсальный измерительный прибор для радиокомпонентов. Проверяет транзисторы (включая MOSFET). Всё определяет автоматически. Даже особо мозг напрягать не стОит. Может измерять индуктивности; ёмкость, ESR и потери конденсаторов.

ESR — Equivalent Series Resistance — один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока. В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется, главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов конденсатора.

Особенности прибора:
-Управляется одной кнопкой.
-Автоматическое выключение питания.
-Заявленный ток потребления в дежурном режиме всего 0,02мкА. Скорее всего правда. Мой мультиметр показал .000мА.
-Автоопределение PNP и NPN транзисторов, N, P-канальных MOSFET, диодов, тиристоров, резисторов, конденсаторов, индуктивностей.
-Может определять наличие защитных диодов в биполярных транзисторах.
-Может измерять сопротивление одновременно двух резисторов (например, для проверки потенциометров).
-…
Смотрим на страницу магазина.

Переводил как смог.

— Питание: 6F22, 9В
-Дисплей: 128 * 64 ЖК-дисплей с подсветкой
— Время теста около 2 секунд, большие ёмкости и индуктивности могут измеряться дольше (до 1 минуты).
— Ток в режиме ожидания: 20nА
— Пределы измерения ёмкости конденсаторов: 25pf-100mF (разрешение 1pF)
— Пределы измерения индуктивности: 0.01mH-20H
— Сопротивление: ≤2100Ω
— Разрешение при измерении сопротивления: 0,1 Ом
— Предел измеряемых значений при измерении сопротивления: до 50MОм
— Ток при тестировании: прибл. 6mA (?)

Из того, что написано не всё понятно.
Например, при тестировании транзистора КТ805 потребляется ток около 23мА. И не может быть меньше 20мА. Одна подсветка чего стОит. 20мА потребляет в тестовом режиме, даже если ничего не подключено (и не зависит от уровня контрастности). Если сравнивать с очень известным мультиметром М890, то его ток потребления всего 4мА. 6мА – это ток, который подаётся на испытуемый радиоэлемент.
Со временем тестированием тоже не всё так гладко (2 секунды). Около 2 секунд занимает самодиагностика плюс время на непосредственно тестирование. Разделить между собой эти два действия невозможно. После нажатия кнопки запускается самодиагностика и только потом тестируется радиоэлемент.

Сопротивление: ≤2100Ω

Вообще не понял, что это означает.

Предел измеряемых значений при измерении сопротивления: до 50MОм

На самом деле измеряет максимум до 40Мом. При этом свыше 30Мом начинает значительно врать. На самом деле и 30Мом очень даже неплохо. Вот только приукрашивать не стОит…
Попытаюсь со всем этим разобраться, но чуть попозже.
Посмотрю сначала на девайс, что из себя представляет.
Сам прибор собран на контроллере Atmel MEGA328P.

Можно оценить качество монтажа.

Приблизительная схема тестера.

Измерительные входы совершенно ничем не защищены. Будьте внимательны.
Устройство запитывается от батареи 6F22 (9В «крона»). Далее напряжение через управляемый транзистор Т3 (на моём тестере 9105) поступает на стабилизатор 78L05.


Имеется место для подключения к контроллеру.

Можно поглядеть на разъём для подключения радиоэлементов с обратной стороны.

По сути всего три контакта, особым образом собранные в разъёме.
Дисплей соединён с платой при помощи гибкого шлейфа. Не самое надёжное соединение. Но если лишний раз не лазить, прослужит годами.

Есть место для подключения SMD-компонентов.
Перехожу к измерениям. Для этого необходимо вставить в разъём тестируемый элемент и нажать жёлтую кнопку.

Перед измерением прибор производит самодиагностику (+ небольшая рекламка) и уже затем выдаёт измеренные характеристики.

Меню дополнительных функций не доступно. Если удерживать кнопку более 2 сек, то попадаешь в регулировку контрастности. Мой тестер пришёл с уровнем 4 (всего 10).
И несколько примеров измерений. Я их поделил по группам. Так должны быть наиболее понятны особенности измерений.
Сначала транзисторы: КТ209, КТ3102, КТ3157 и МП10.

КТ117.

Здесь прибор ошибся. Скорее всего, такой транзистор в его базе отсутствует.
КП303И.

А вот так он показывает составные транзисторы: КТ973Б, КТ829.

Здесь тоже промашка. Но не будем слишком требовательны. Это явно перебор.
Конденсаторы электролитические: 100мкФ*50В*105˚С импортный и наш К50-6 10мкФ*100В (1986г. с ромбиком).

Кроме ёмкости отображает значение ESR и процент потерь (Vloss). Значение ESR и процент потерь измеряет всегда, независимо от того электролит это или не электролит. При потерях менее 0,1% (Vloss) значение на экран не выводит.
А это уже китайские НЕэлектролиты.

Конденсаторы электролитические танталовые из далёких Советских времён понимает неоднозначно.

Он их определяет как диоды. Хотя ёмкость измерил правильно. Кто сталкивался с танталовыми конденсаторами, тот знает, что это особый подвид кондюков.
Обычный светодиод к китайскому фонарику и ЗЛ102Б.


Диоды Д220 и Д9 (?). Измеряет всё, что только не подтыкал.

Тиристоры: КУ101А и КУ112.


Более мощные может и не определить или поймёт как транзисторы. Тиристоры и симисторы могут быть определены, если испытательный ток выше тока удержания.
Дроссель 20мкГн.

Прибор может определять и стабилитроны. Главное, чтоб напряжение отсечки было не более 4,5В.
Я измерил стабилитрон (если мне не изменяет память КС 133А). Будьте внимательны. При подключении к разным клеммам показывает разные картинки. При подключении к клеммам 1-3 показывает встречно-последовательное соединение.

(Ток тестирования не показывает. Для стабилитронов это важно).
Картинка со встречно-параллельным подключением правильнее (1-2).
А вот так он видит IRFZ44N MOSFET.


И МС КРЕН на 5В ради хохмы.

А теперь осталось на образцовке проверить как точно измеряет. Могу только проверить правильность измерения ёмкости и сопротивления.
При калибровке измерителя сопротивления помогут мне магазины сопротивлений Р4834 и Р4002.

Все данные тоже свёл в таблицу. Особо не заморачивался. Проверил в основных точках. Чтобы понять, что из себя представляет девайс, этого достаточно. Получается, что сопротивление всех соединительных проводов 0,19 Ом.

Точность измерения очень высокая. Но есть особенность. При измерении сопротивления свыше 30Мом начинает значительно привирать. Свыше 40МОм не измеряет вообще.
Перейду к измерению ёмкости. Каждый магазин имеет начальную ёмкость (корпуса, соединительных проводов…), которую необходимо учитывать (добавлять) при измерениях. В данном случае она составляет 179 пФ. Вот результат.

Ёмкость тоже измеряет очень неплохо. Показания ESR тоже записал. Они понадобятся в следующей таблице.
И самое главное, ради чего городил огород. Посмотрю, как точно измеряет ESR конденсаторов. Для этого из образцовых магазинов собираю схему.

На магазине ёмкостей выставляю 100мкФ (там нулевой ESR). Соединяю последовательно с магазином сопротивлений. Получается эквивалент типичного электролита. Магазином сопротивлений буду изменять (как бы внутреннее) сопротивление электролита. И посмотрю, что же мой тестер покажет.
Все полученные данные свёл в таблицу.

Не забываем, что сопротивление проводов не скомпенсировано.
Каждый может сделать вывод сам.
До пяти Ом всё неплохо. До десяти – вполне терпимо. А далее никуда не годится. ESR свыше 17 Ом прибор в принципе показывать не умеет (и не нужно).
Проверил свои кондёры. ESR свыше 3 Ом не нашёл. Значит тестер вполне годный.
Вот такой весёлый приборчик. Лично мне он понравился.
Подведу итог.
Плюсы:
+ Измеряет почти всё, что нужно.
+ ESR конденсаторов измеряет достойно (моё мнение).
+ Автоопределение компонента.
+ Определяет цоколёвку и проводимость транзисторов.
+ Определяет анод и катод диодов.
Минусы:
— Меню дополнительных функций не доступно. Можно регулировать только контрастность.
— Батарея питания 9В.
-Большой ток потребления при тестировании.
— Для габаритных деталей придётся паять провода с крокодилами для подключения.
-Перед измерением НЕОБХОДИМО разряжать проверяемые конденсаторы, чтобы измерение не стало последним для прибора.
Вот, в общем-то, и всё. Для правильного вывода того, что написал, должно хватить. Я лишь могу гарантировать правдивость своих тестов. Кому что-то неясно, задавайте вопросы. Надеюсь, хоть кому-то помог.
Удачи!

В настоящей статье я познакомлю вас с широкоизвестным тестером компонентов LCR-T4, стоимость которого составляет всего около 500 руб.

Приобрести его можно в:

  • AliExpress
  • Gearbest
  • Banggood

Образец тестера для обзора предоставлен сайтом Паяльник в рамках подфорума «Обзоры и тесты», где каждый желающий при соблюдении определенных условий может получить на обзор различное оборудование!

С момента получения трек-кода до получения посылки прошло чуть больше 2 недель. Посылка была традиционной для AliExpress: мелкий пакет, тестер был так запелёнут в пленку с пенопропиленом, что опознать его удалось не сразу — см. фото.

Пакет

К внешнему виду и качеству сборки нет никаких претензий, я бы даже сказал – превосходное качество: компоненты припаяны, как по струнке, никаких следов флюса, никаких наплывов припоя.

Прототип этого тестера компонентов широко известен: это разработка иностранца Markus Frejek. Но, как и все китайские изделия, данное устройство поставляется без какой бы то ни было документации, поэтому с его техническими характеристиками возникает проблема: указанным «рекламным» параметрам на сайте AliExpress веры нет (как по причине «кривого» перевода, так и по привычке продавцов «приукрашивать»), а утверждать, что параметры конкретно этого устройства соответствуют параметрам прототипа, нельзя, так как версий этих «прототипов» великое множество.

Усредняя, можно назвать следующий перечень основных возможностей устройства:

  • Измерение сопротивлений в широком диапазоне;
  • Измерение ёмкостей конденсаторов в широком диапазоне;
  • Определение эквивалентного последовательного сопротивления конденсаторов (ESR);
  • Измерение индуктивностей в широком диапазоне;
  • Определение основных параметров диодов (прямое падение напряжения, проходная ёмкость);
  • Определение основных параметров транзисторов любых типов;
  • Определение цоколевки тиристоров и триаков;
  • Определение назначения выводов всех поддерживаемых полупроводниковых компонентов с числом выводов 2 или 3.

Далее вашему вниманию предоставляется детальный фотоотчет о проверке вышеперечисленных характеристик. В качестве контрольного «эталонного» прибора для контроля RCL-параметров я применил измеритель иммитанса Е7-20, параметры диодов определял при помощи мультиметра, параметры биполярных транзисторов – при помощи мультиметра с функцией измерения коэффициента усиления. К сожалению, «настоящего» прибора для измерения параметров полевых транзисторов и других полупроводниковых приборов, у меня нет, поэтому в соответствующей части обзора мне пришлось ограничиться только демонстрацией результатов работы этого тестера.

Проверка измерения сопротивлений.

Я наугад взял полтора десятка резисторов из своих запасов и протестировал их. Фотографии с результатами вы видите ниже. Процент отклонения вычислялся по отношению к показаниям «образцового» прибора Е7-20, знак отклонения не учитывался, т.е. рассчитанный процент имеет знак «плюс-минус».

Резистор 5,1 Ом, отклонение 0,5%:

Резистор 510 Ом, отклонение 0,8%:

Резистор 8,2 Ом, отклонение 0,7%:

Резистор 1,8 кОм, отклонение 1,3%:

Резистор 68 Ом, отклонение 0,8%:

Резистор 12 Ом, отклонение 2,5%:

Резистор 18 кОм, отклонение 1,5%:

Резистор  120 Ом, отклонение 0,5%:

Резистор 5,1 МОм, отклонение 0,4%:

Резистор 1,2 МОм, отклонение 1,7%:

Резистор 150 кОм, отклонение 0,4%:

Резистор 62 кОм, отклонение 0,2%:

Резистор 1 Ом, отклонение 5,7%:

Резистор 51 кОм, отклонение 0,2%:

Проволочная перемычка (отклонение не определено, слишком малое сопротивление):

Вывод: со средней точностью 1,5% прибор способен измерять сопротивление в диапазоне от 10 Ом до 10 Мом (5 порядков), с точностью не хуже 10% — от единиц Ома, а доли Ома определяются «приблизительно». Диапазон в 7 порядков обеспечивается.

Оценка – отлично.

Проверка измерения ёмкости и ESR.

Тестировались наугад взятые конденсаторы, как новые, так и бывшие в употреблении, некоторым больше 30 лет… Эталонный прибор определяет емкость и последовательное сопротивление на выбираемой частоте, в то время как рассматриваемый в обзоре тестер — на фиксированной (и лично мне неизвестной). Результаты далее в виде фотографий c соответствующими комментариями после фотографий.

Этот мелкий конденсатор маркирован, как 22 пФ. Как видите, рассматриваемый тестер ошибся более, чем вдвое.

Конденсатор КМ обозначен, как 200 пФ. Как видите, тестер уже вполне адекватно справился с задачей — погрешность около 15%.

А трубчатый конденсатор ёмкостью 1000 пФ уже не был проблемой — погрешность измерения менее 4%.

И полторы тысячи пикофарад не проблема, погрешность меньше 5%.

Неплохо дело и для ёмкости 47 нанофарад — погрешность чуть больше 4%.

Плёночный конденсатор 0,22 мкФ измерен рассматриваемым тестером с погрешностью почти 1%.

Ёмкость в 1 мкФ определена с точностью лучше 1%.

Вы уже обратили внимание, что для более-менее ёмких конденсаторов тестер показывает некий параметр Vloss в процентах. По-моему, это нестандартная характеристика конденсатора, показывающая, как быстро падает напряжение на заряженном конденсаторе, т.е. косвенно характеризует свойства его диэлектрика (ток утечки в том числе). Чем больше это значение, тес быстрее саморазряжается конденсатор.

Для ёмкостей свыше 100 нФ прибор показывает и значение ESR. Я не измерял этот параметр для всех вышеприведенных конденсаторов, посчитав это не сильно важным. Но тем не менее я сделал это для неэлектролитических конденсаторов серии К73-17 (пленочные).

Можете сами убедиться: ёмкость герой этого обзора измеряет очень точно, лучше 1%, а вот ESR определяет очень приблизительно: у первого в этой серии тестов конденсатора, ёмкостью 0,68 мкФ измеренное образцовым прибором значение ESR наибольшее — чуть больше 1 Ома, но LCR-тестер показал в 10 раз меньшее значение. Для остальных конденсаторов, у которых эквивалентное последовательное сопротивление меньше нескольких сотен миллиом, рассматриваемое устройство не смогло его измерить в принципе, показав 0.

Уже сейчас можно сделать вывод, что ESR данное устройство позволяет только оценить, т.е. можно сравнивать конденсаторы между собой по этому параметру, выбирая лучший, но надеяться, что показания действительно соответствуют фактическому значению, не стоит.

Для электролитических конденсаторов с ESR всё ещё печальнее: если по каким-то причинам ESR конденсатора слишком велико, прибор начинает страшно врать и при определении ёмкости. Из-за не совсем адекватного измерения ESR очень сложно в этом случае понять, то ли конденсатор ни куда не годный, то ли прибор врёт. И это огорчает.

Тестирование того, как чудо китайской техники измеряет параметры электролитических конденсаторов, я начал с конденсаторов большой ёмкости.

1500 мкФ nichicon, выпаянный неизвестно откуда, LCR-тестер измерил, как и ожидалось, очень неплохо, ошибка порядка 2%, а вот при измерении ESR он ошибся уже в разы.

Конденсатор HITANO 1000 мкФ подтвердил ожидания: точность ёмкости 11%, а ESR вообще никак.

Так как тенденция с ESR уже очевидна (и можете мне поверить — я действительно это проверял), далее я не буду приводить фотографий с результатами измерения ESR образцовым прибором. 

Конденсатор 470 мкФ измерен с ожидаемой точностью 4%.

А далее я продемонстрирую чудеса измерения этим прибором.

Угадайте, какая ёмкость написана на конденсаторе с фото выше? Приборчик показал странное значение даже близко не подходящее к значениям из стандартного ряда. Вот не поверите: это конденсатор 100 мкФ!

Вот что показывает «настоящий прибор». А дичайшая ошибка измерения обусловлена вот этим:

Очень большое значение ESR! А LCR-тестер показывает все равно почти в 2 раза меньше. То есть надо сильно-сильно насторожиться, если описываемый тестер намерял ESR больше 1 Ома — возможно, доверять показанной ёмкости нельзя.

Вывод: измерение ёмкости с приемлемой точностью рассматриваемый прибор способен реализовать, начиная с сотен пикофарад, значения меньше 100 пФ, скорее всего, будут отличаться от реального значения в несколько раз. Верхний предел измерения ёмкости превышает единицы тысяч микрофарад, причем длительность измерения очень ёмких конденсаторов достаточно долгая. Определить опытным путем верхний предел измерения ёмкости я не решился, но и смысла в том не вижу, так как подсоединить к прибору конденсатор с толстыми выводами невозможно (если не пользоваться паяльником, конечно).

Оценка – 3 с плюсом.

Проверка измерения индуктивностей.

Как и ранее, результаты тестирования индуктивностей на фотографиях. Как и для ёмкостей, два снимка эталона и один — тестируемого устройства.

Самодельный дроссель на «большой» ферритовой катушке. Отклонение индуктивности 9%, отклонение сопротивления 5%.

Дроссель на кольце из какого-то источника питания. Отклонение индуктивности 9%, сопротивление определено неверно, ошибка 731%.

Дроссель из ЭЛТ-монитора, маркирован YSC-9914 370. Отклонение индуктивности 5%, сопротивления — 157%.

Дроссель из ЭЛТ-монитора, маркирован YSC-9914 360. Отклонение индуктивности 4%, сопротивления — 146%.

Дроссель эпохи СССР ДПМ-0,6 40 мкГн, отклонение индуктивности 1%, сопротивления 108%.

Дроссель неизвестно откуда. Тестер LCR не справился со столь малой индуктивностью, приняв дроссель за закоротку.

Маленькая гантелька темно-серого цвета неизвестно откуда. Ошибка индуктивности 1%, сопротивления 9%.

Еще одна гантелька синего цвета неизвестного происхождения. Отклонение индуктивности 18%, сопротивления 368%.

Миниатюрный дроссель 47 мкГн. Отклонение индуктивности 10%, сопротивления 12%.

Вывод: от десятков микрогенри до единиц миллигенри (3-4 порядка) прибор хорошо измеряет индуктивность дросселей, погрешность в среднем не превышает 10%. Однако, чем ниже активное сопротивление дросселя, тем больше погрешность измерения индуктивности. Активное сопротивление индуктивностей прибор позволяет оценить с погрешностью в разы, причем, тенденция очевидна: сопротивления менее 1 Ома тестер измеряет с недостаточной точностью, что и отражается на соответствующей характеристике индуктивностей.

Оценка – хорошо.

Тестирование диодов.

Тестирование диодов — это одна из основных функций рассматриваемого устройства. И могу сказать, что с диодами он справляется очень неплохо.

На фото Д20. Главное — это безошибочное определение анода и катода. Прямое падение напряжения хоть и отличается от результата измерения «настоящим» мультиметром, но я не склонен считать это недостатком: нам ничего не известно, при каком токе через диод измеряется падение в мультиметре (предполагаю 10 мА), да и про ток в рассматриваемом тестере так же ничего не известно. А диод — штука страшно нелинейная… Кстати, рассматриваемое устройство умеет определять и проходную ёмкость диода, причем в единицах пикофарад, хотя с настоящими конденсаторами такой ёмкости не справляется. Есть предположение, что это проблема прошивки.

Диод КД105. Адекватно.

И КД213Г не вызывает тревоги.

И с мелочью КД522 приборчик справился. Как видите, тестер компонентов завышает значение прямого падения напряжения примерно на 100 мВ для кремниевых диодов. 

А германиевые ему далеко не все по зубам. Я был бы не я, если бы не нашел диод, об который споткнулся рассматриваемый тестер. Это дедушка Д2.

Уж не знаю, что не так с этим диодом, но сами видите, что приборчик показывает что-то совсем не то…

Стабилитроны я попробовал тестировать, но результаты не привожу, т.к. они весьма унылые: тестер показывает прямое падение стабилитрона, как у не очень хорошего диода, а вот интересующее нас напряжение стабилизации не показывает. Точнее, показывать-то показывает, как 2 паралельно включенных диода, но паддения на каждом и близко не соответствуют ожидаемым. В общем, стабилитроны тестером лучше не проверять.

Вывод: прибор безошибочно определяет анод и катод кремниевых диодов, а так же хорошо определяет прямое падение напряжения. Тестирование стабилитронов с напряжением стабилизации более 3 вольт бессмысленно, т.к. не даёт никаких значащих значений параметров. Германиевые диоды устройству поддаются не всегда из-за больших утечек.

Оценка – хорошо.

Транзисторы.

А вот тестирование транзисторов — это главное, чем наш прибор знаменит. Но, забегая вперед, скажу, что именно в этом случае я обнаружил наибольшее количество «сюрпризов».

Сначала о хорошем: биполярные транзисторы малой и средней мощности (не дарлингтоны) тестер опознает отлично.

КТ3102 — отлично! И, к слову, «настоящий» прибор крайне неудобен в плане подключения транзисторов. А рассматриваемый измеритель — просто замечателен!

И КТ3107 не огорчил! 

 А это уже иностранец BC547B, и он тоже не вызвал сложностей.

Старички КТ315Г и КТ361Б не влезают в «фирменный» мультиметр, но успешно тестируются «китайцем». Странновато, что КТ315Г имеет такой небольшой коэффициент усиления, ведь буковка Г как бы обозначает группу с приличным усилением… А вот КТ361Б вполне адекватен.

А это уже и не старичок, а дедушка МП42. Но возраст — не проблема!

КТ203

КТ301А.

Ладно, а что там с полевыми транзисторами? А вот что.

Это КП103М. Обозначение полевика довольно непривычное, но благодаря обозначению выводов, на эту странность можно не обращать внимания.

А это КП302БМ — видите, канал другого типа? Это радует — прибор определяет!

А вот и отечественный N-MOP транзистор КП505А. А теперь — внимание, следите за руками!

Это тот же самый КП505А, но установленный по-другому. Видите? Внимательно смотрите, как подключен «защитный» диод на обоих картинках. Видите? Сами выводы определены верно, а вот внутренняя структура нарисована странно.

Похоже, это ошибка прошивки, потому что для MOSFET она повторяется независимо от типа. Вот IRF840:

А вот вам тиристор КУ103:

Я, конечно, понимаю, что иностранный разработчик мог не знать про существование такого тиристора… Но как по мне, так лучше б он вообще не опознал его, чем решил, что это транзистор. Если бы надпись на корпусе не сохранилась, много чудес могло бы ожидать радиолюбителя, применившего такой «транзистор»…

То есть вы уже догадались, что я постепенно перехожу к сюрпризам?

Это однопереходный транзистор КТ117А. Но тут, честно говоря, еще вопрос, хорош ли тестер или нет: в некоторой литературе этот полупроводниковый прибор именуется как «двухбазовый диод». Термин весьма интересный — откуда у диода база, тем более две?! Но уж как есть, так есть…

А вот на этих двух фотографиях не два разных транзистора, а один и тот же КТ973. Видите чудо? В зависимости от того, в какие контакты вставить транзистор, он меняет пол, то есть проводимость? Вот это уж фича, так фича! И вроде ж наименование выводов правильно определено, а поди ж ты… А всё почему? Потому что это транзистор Дарлингтона. Но чем он не угодил тестеру — я не знаю…

Вывод: прибор превосходно справляется с определением цоколевки, проводимости и параметров биполярных (обычных) транзисторов. Транзисторы Дарлингтона могут тестироваться с ошибками. Основные параметры полевых транзисторов определяются безошибочно. Нетипичные транзисторы (однопереходные, Дарлингтоны, IGBT и др.) тестируются нестабильно. Заметив странности в показаниях прибора при смене порядка выводов в колодке, следует задуматься.

Оценка – удовлетворительно.

Ну и еще немного приятного и не очень.

Это симистор MAC97A.

А это не резистор, а тоже симистор BTA12-600C. Такие вот пироги…

Вывод: маломощные триаки тестируются хорошо. Мощные – чаще не тестируются или дают неверный результат. С тиристорами вопрос до конца не определен… В общем, все сложно.

Оценка – удовлетворительно с натяжкой.

Резюме.

Данное устройство, обладает широкими возможностями по тестированию радиоэлектронных компонентов, и, хотя не лишено определенных недостатков, по моему личному мнению, весьма полезно радиолюбителям различных категорий.

Если вы частенько приобретаете компоненты на радиорынке или в магазине, этот тестер просто обязан быть в вашем арсенале для борьбы с перемаркировкой, некачественными подделками и недобросовестными или некомпетентными продавцами.

Если вы, наоборот, занимаетесь торговлей компонентами, то вам необходимо иметь данный прибор как минимум для того, чтобы убедить покупателя в вашей добросовестности.

Если вы начинающий, то это изделие поможет вам как в изучении свойств компонентов, так и в подборе б/у компонентов для своих конструкций.

Функция измерения индуктивностей и оценки ESR конденсаторов наверняка впечатлит опытных радиолюбителей.

Ну а если ко всему вышеперечисленному вы еще и увлекаетесь (или хотя бы намереваетесь увлечься) программированием микроконтроллеров, то в этом устройстве вы получаете отличную основу для собственных экспериментов в программировании, а так же можете очень существенно расширить функции тестера, воспользовавшись свободно распространяемыми исходными текстами или огромным количеством готовых прошивок.

О том, как меняются характеристики устройства после прошивки других версий программного обеспечения, я намереваюсь рассказать в следующей статье.

Теги:

Понравилась статья? Поделить с друзьями:
  • Тестер качества воды tds 3 инструкция по применению
  • Тестер кабеля rj 45 rj 11 468 proconnect инструкция
  • Тестер емкости акб skat t auto инструкция
  • Тестер воды tds meter 3 инструкция
  • Тестер аккумулятора konnwei kw208 инструкция на русском