Сегодня речь пойдет о китайском тестере компонентов LCR-TC1. Пришел он в обычном почтовом пакете, щедро обернутный пупыркой и в антистатическом пакетике.
Стоимость:
- AliExpress ~25$
- Banggood ~1430 руб (25$)
Кроме самого тестера в комплект входили щупы, перемычка для калибровки, конденсатор на 1мкФ, светодиод и кабель micro USB для зарядки. Да, да. Эта версия имеет встроенный аккумулятор. Выглядит тестер довольно симпатично. Корпус хоть и китайский, но корпус. Гораздо удобнее пользоваться такой вещью, чем голой платой с висящей на проводах батарейкой.
На лицевой стенке корпуса виден дисплей, кнопку запуска, ZIP панельку для подключения тестируемого компонента и ИК приемник. Надпись на корпусе предупреждает, что компонент следует разряжать, прежде чем тыкать им в прибор. На нижнем торце расположен разъем для подключения к ЗУ и индикатор зарядки (двухцветный).
Все остальные торцы пустые. Проверим, как оно все работает. Жмем кнопку и прибор оживает.
В эту версию устанавливается цветной дисплей. Разрешение невелико, но большего и не надо, информация прекрасно читается. Сама работа тестера мало отличается от его собратьев. Подключаем компонент, жмем кнопку, видим результат. Перед началом использования необходимо провести калибровку. Для этого замыкаем все 3 входа и жмем кнопку старта (при желании использовать провода для измерений, калибровать необходимо с подключенными проводами). Начнется процесс калибровки:
Через некоторое время тестер попросит убрать перемычки.
После выполнения требования, тестеру потребуется еще несколько секунд на завершение калибровки.
Перейдем к проверке функционала. От других подобных тестеров данный отличается наличием двух функций: распознавание ИК посылок от пультов управления и проверка стабилитронов. С этих функций и начнем. Сперва вооружимся ПДУ и включим прибор. Дожидаемся пока тестер пожалуется, что к нему подключен неизвестный или неисправный компонент, затем жмем кнопку на пульте и вуаля. Тестер не только распознал нашу посылку, но даже нарисовал ее на дисплее:
Теперь посмотрим, как у нас с проверкой стабилитронов. Для них в панельке есть специальные контакты, обозначенные как «К» и «А». Катод и анод соответственно. Подключаем стабилитрон соблюдая полярность, жмем Start и видим параметры подопытного. В данном случае стабилитрон на 5.1В.
Мультиметр для данного стабилитрона в схеме параметрического стабилизатора стабилитрон + резистор показал те же 4,93В. Что ж, неплохо. Настало время устроить прибору настоящий тест. Как и в прошлый раз результаты измерений будут сравниваться с профессиональным RLC измерителем фирмы Instek. А заодно и с героем предыдущего обзора M328. Начнем с резисторов:
Номинальное значение | Instek LCR-819 | M328 | TC1 |
68 Ω | 66,9 Ω | 67,0 Ω | 66,6 Ω |
1,2 К | 1193 Ω | 1189 Ω | 1196 Ω |
5,6 К | 5649 Ω | 5643 Ω | 5654 Ω |
33 К | 33,0 Ω | 33,01 К | 32,98 К |
100 К | 99,4 К | 99,30 К | 99,41 К |
330 К | 326 К | 323,2 К | 325,1 К |
1,3 М | 1301 К | 1295 К | 1304 К |
Показатели на уровне предыдущего тестера. Теперь задачка посложнее, индуктивности:
Номинальное значение | Instek LCR-819 | M328 | TC1 |
50 мкГн | 0,05 мГн | 0,05 мГн | 0,05 мГн |
100 мкГн | 0,11 мГн | 0,09 мГн | 0,1 мГн |
300 мкГн | 0,30 мГн | 0,29 мГн | 0,29 мГн |
5 мГн | 4,9 мГн | 3,1 мГн | 3,1 мГн |
Та самая индуктивность 5 мГн, с которой не справился предыдущий тестер, оказалась не по зубам и этому. Не нравятся им катушки с запредельным сопротивлением.
Ну и конденсаторы:
Номинальное значение | Instek LCR-819 | M328 | TC1 |
Пленка | |||
100 нФ | 103,0нФ | 103,0 нФ | 102,8 нФ |
220 нФ | 212,7 нФ | 212,6 нФ | 212,0 нФ |
470 нФ | 459 нФ | 461,0 нФ | 460,9 нФ |
680 нФ | 692 нФ | 693,0 нФ | 694,0 нФ |
1 мкФ | 958 нФ | 958,4 нФ | 957,6 нФ |
Электролиты | |||
1 мкФ | 1005 нФ (0,90) | 1010 нФ (0,92) | 1012 нФ (0,85) |
47 мкФ | 43,2 мкФ (0,71) | 44,91 мкФ (0,68) | 44,8 мкФ (0,67) |
100 мкФ | 95,1 мкФ (0,62) | 97,5 мкФ (0,56) | 98,55 мкФ (0,57) |
220 мкФ | 215,2 мкФ (0,68) | 219,0 мкФ (0,61) | 217,7 мкФ (0,65) |
3300 мкФ | 3259 мкФ (0,04) | 3376 мкФ (0,03) | 3385 мкФ (0,05) |
4700 мкФ | 4583 мкФ (0,06) | 4803 мкФ (0,05) | 4796 мкФ (0,05) |
И тоже весьма неплохо.
Транзисторы и диоды тоже вполне себе тестирует:
Тесты окончены, настало время посмотреть чего там китайцы насовали внутрь. Берем крестовую отвертку и выкручиваем 4 шурупа на задней стороне прибора. Затем аккуратно разнимаем половинки. Как оказалось, аккуратность была вовсе не лишней, т.к. АКБ приклеен на задней стенке, а плата прикручена к передней.
АКБ совсем крошечная. По виду миллиампер 500-600 емкости. Но при желании в корпус легко устанавливается более емкий аккумулятор. Выкручиваем два шурупа, крепящие плату и вытаскиваем саму плату. На лицевой стороне ничего интересного, дисплей, разъем, ИК приемник и кнопка.
Сзади же расположена вся начинка тестера:
МК стандартный, ATmega328, а вот питание выглядит интересно. Тут собран преобразователь на два выходных напряжения. Одно около 8 В подается на стабилизатор 7805 и идет на питание цифровой части. Второе же, около 34 В предназначено для проверки стабилитронов. Тут все просто, вместе с резистором на 10 кОм стабилитрон образует параметрический стабилизатор, напряжение с которого поступает на вход МК. Здесь же расположен контроллер заряда для АКБ.
На этом, пожалуй, закончим. Что могу сказать по поводу данного, и не только, тестера. Вещь, однозначно, полезная и должна быть в арсенале каждого, кто увлекается электроникой. Конкретно этим тестером очень удобно пользоваться за счет наличия корпуса и встроенного АКБ. Не надо думать, что батарейка оторвется или разрядится (а тот же M328 очень прожорливый) в самый неподходящий момент. Так же порадовало наличие функции проверки стабилитронов, т.к. довольно часто в закромах оказываются стабилитроны со стертой маркировкой.
Теги:
Опубликована: 28.05.2017
Изменена: 31.05.2017
6
Вознаградить
Я собрал
0
3
x
Оценить статью
- Техническая грамотность
- Актуальность материала
- Изложение материала
- Орфография
0
Средний балл статьи: 4.9
Проголосовало: 3 чел.

Обновление от:
- 21/06/2019 — вторая поломка устройства
Тестер элементов, очень полезная и приятная штука. Fish8840 я с удовольствием использую давно, но захотелось устройство с большими возможностями, тем более постоянно в нем есть необходимость на работе и я присмотрел себе Tester-TC1.
Основные преимущества этой модели перед Fish8840:
- встроенный аккумулятор,
- определение напряжения стабилизации стабилитронов,
- тестирование ИК пультов.
Заказал его в Китае, пришел он просто в пакете, ни инструкции, ни коробки (про качество сборки и криво вставленный экран даже писать не хочу).
Первое включение смутило и расстроило, колодка пустая, а на экране информация о стабилитроне с напряжением открытия 0 мВ. Юстировка не помогала, на лицо явный брак.
Радовало только одно, для проверки стабилитронов, отдельная нижняя левая часть колодки, она явно не работает, а вот остальные контакты исправны и прочие элементы тестируются.
Так-же работает и приемник ИК пультов, но брак есть брак, либо пишем жалобу и просим замену, либо разбираемся сами.
Принцип тестирования стабилитронов мне был понятен. Внутренний повышающий источник питания, поднимает напряжение подаваемое на контакт К (катод) пока напряжение не достигнет момента открытия стабилитрона, за всем этим безобразием следит контроллер и после открытия стабилитрона высвечивает на экране полученный результат. Максимальное напряжение для проверки стабилитрона 30 вольт .
А у нас получается, либо нет тестирующего напряжения, либо контакты К (катод) и А (анод) замкнуты между собой. Будем вскрывать тестер и разбираться, тем более надо выставить нормально экран. Продавцу писать это не наш метод.
Для тех, кто не любит смотреть видео опишу ситуацию вкратце. Замыкания между контактами К и А не обнаружилось, но не нашлось и тестирующего питания.
Оказалось всё банально просто, лопнула пайка ножки трансформатора вторичного источника питания. Пришлось качественно пропаять и приклеить ровно экран на двухсторонний скотч.
Теперь и выглядит лучше и сообщение на экране верное, значит продавца тревожить не будем, но в отзыве отпишемся.
Начнем с тестирования стабилитрона, все ли у нас нормально. При правильной установке прибор определяет напряжение стабилизации, при не правильной прибор показывает падение напряжения на Р-N переходе как у обычного диода. Всё, прибор исправен.
Сравнительный тест Fish8840 и ТС1
Не хочу вникать, кто точнее или быстрее, просто информация на экранах об одних и тех же элементах но в разных приборах. ТС1 порой выдает больше информации.
Тестируем светодиод
Тестируем транзистор
Тестируем индуктивность
Тестируем электролит большой емкости
Тестируем электролит малой емкости
Тестируем пленочный конденсатор
Тестируем резистор
Выводы
Достоинства
- Встроенный аккумулятор.
- Проверка стабилитронов.
- Проверка ИК пульта.
- Малые габариты.
- Законченный вид, корпус и т.п.
Недостатки
- Качество сборки (брак).
- Отсутствие площадки для проверки SMD элементов.
- Очень быстро выключается дисплей.
Вторая поломка
Чуть меньше месяца отработал тестер, во время тестирования транзистора он просто выключился. Я подумал, что сел аккумулятор, поставил на зарядку, но результат ноль. К моему видео про это устройство уже появился комментарий по похожую проблему.
При вскрытии корпуса стало понятно, что проблема явно в этом, трансформатор вторичного источника питания где и стоять конденсаторы С11 и С12, был горячий, явно пытается запустится, но на выходе короткое.
Так и вышло С11 был в коротком, если снять оба конденсатора, при включении на экране появляется надпись, о якобы обнаруженном стабилитроне на 9В. Я особо не морочился, на скорую руку снял с донора элемент похожего размера и установил в тестер.
Теперь он снова в работе.
Товар можно купить тут
Всех приветствую. Сегодня наконец рассмотрим один из моих любимых измерительных приборов. Это тестер компонентов TC-1 , по функционалу по сути этот тот же знаменитый транзистор тестер, но эта версия отличается от бюджетных тем, что снабжена уже цветным дисплеем, встроенным литиевым аккумулятором, встроена в корпус и умеет измерять напряжение стабилизации стабилитронов до 30 вольт.
Этот прибор у меня уже почти пол года, почти всегда под рукой. Для тех кто не в курсе, этот прибор может измерять практически любые компоненты, транзисторы независимо от их типа, резисторы, конденсаторы индуктивности, тиристоры, диоды и даже стабилитроны, в общем все кроме микросхем.
В комплекте с прибором идут крючкообразные щупы, , тестовый светодиод и конденсатор, Щупы через некоторое время заменил на самодельные, они гораздо надежней
Исключительно все испытуемые компоненты прибор обнаруживает автоматически.
Основные параметры приведены ниже.
Прибор довольно точный, о чем свидетельствую мои тесты с прецизионными компонентами, порадовало то, что тестер довольно корректно измеряет низкоомные резисторы и конденсаторы малой емкости.
Перед первым запуском стоит откалибровать прибор , для этого замыкаем все три терминала вместе , затем нажимаем на кнопку включения, пойдет автокалибровка, через некоторое время прибор от нас попросит разъединить терминалы для дальнейшей колибровки, следуем указаниям и через некоторое время прибор готов к работе. В дальнейшем прибор не нуждается в калибровке, но раз в пол года можно.
Питается устройство от литий-ионного аккумулятора с емкостью в 550мА/ч, на нижнем торце видим micro usb разем для зарядки и светодиодный индикатор. Диод светится красным в процессе заряда и зеленым, когда процесс заверен.
Еще одной новинкой является функция тестирования пультов дистанционного управления, не знаю на сколько она полезна , но прибор может отображать шим сигнал с пульта управления , который отображается на нижней строке, на верхней строке отображается код самого прибора.
Для того , чтобы проверить пульт управления нужно всего лишь нажать на кнопку включения, подождать до тех пор пока прибор сообщит, что компонент н обнаружен, затем направить пульт управления и нажать на любую кнопку с пульта.
Верхняя строка на экране прибора — код приемника, на нижней строке можем видеть им сигнал с пульта. Лично для меня такая функция в принципе бесполезна.
А теперь вскроем прибор и посмотрим на внутренности.
Бросается в глаза Li-ion аккумулятор с емкостью 550мА/ч, сама плата высокого качества.
Устройство построено на базе микроконтроллера Atmega324, присутствует повышающий преобразователь, который необходим для теста стабилитронов и питания некоторых узлов схемы напряжением в 5 Вольт, также есть линейный стабилизатор на фиксированное напряжение 5 В.
ТЕСТЫ
Транзисторы
Прибор выводит на дисплей основные параметры транзистора, проводимость, расположение выводов (цоколевка), коэффициент усиления, напряжение база-эмиттер , в некоторых случаях даже отображается обратный ток коллектора — это в случае биполярных.
В случае полевых
Прибор также отображает тип транзистора, цоколевку, напряжение срабатывания ключа, емкость затвора и сопротивление открытого канала, но последний пункт отображается не совсем корректна в случае проверки мощных низковольтных полевиков у которых переход имеет сопротивление меньше 0,1Ом (прибор не отображает значения меньше 0,1Ом)
Германиевые МП42 и МП26
Биполярные средней мощности BD139 и BD140
Диоды
Отображается цоколевка диода, падение напряжения на его переходе, в некоторых случаях и емкость перехода.
Шоттки SBL3045
Шоттки
Мощный импульсный диод КД2997
Германиевый Д9Б
Конденсаторы
Отображается емкость конденсатора, в некоторых случаях ESR (внутреннее сопротивление) и утечка в процентах (последние пункты чаще отображаются в случае проверки электролитов)
ВНИМАНИЕ! ПЕРЕД ТЕСТОМ КОНДЕНСАТОР ОБЯЗАТЕЛЬНО НУЖНО РАЗРЯДИТЬ!!!
Индуктивности
Достоинства.
Легкий, компактный, питание от встроенного аккумулятора, цветной дисплей и высокая точность работы. В отличии от штатных приборов того же предназначения, данный вариант может тестировать стабилитроны, ну и пульты дистанционного управления впридачу.
Цена не маленькая, но он стоит своих денег, купили разок и забыли про покупку более хорошего прибора, он всем будет устраивать на протяжении долгих лет.
Недостатки.
За где-то год использования был замечен только один недостаток — некорректно тестирует мощные IGBT транзисторы, их прибор определяет либо как диод либо как конденсатор, но справедливости ради замечу, что такой недостаток имеют исключительно все схожие приборы. Это связано с тем, тестовое питания слишком мало для открытия многих IGBT.
В следующих обзорах мы рассмотрим схожий, но более дорогой прибор и сравним его с этим образцом.
До новых встреч…
Товар можно купить тут
1 апреля 2021
Устройство для распознавания и тестирования радиодеталей
Введение
Практически во всех цифровых мультиметрах, начиная с самых древних серии D830, имеется в наличии функция проверки биполярных транзисторов с отдельным круглым разъёмом. Однако в том мультиметре, который я приобрел для себя (HoldPeak HP-41B), данный функционал отсутствовал. И такая покупка была осознанной, ибо к моменту приобретения мультиметра я уже знал про такой класс приборов, как тестеры транзисторов. Один из них в конечном итоге пополнил мою домашнюю лабораторию, и о нём сегодня пойдёт речь.
Но перед тем, как перейдём непосредственно к обзору прибора, хотелось бы сказать пару слов о том:
Что такое «тестер транзисторов»?
В учебной литературе про тестеры транзисторов говорится, что это приборы для проверки электрических свойств транзисторов и полупроводниковых диодов. Но в нашем случае проверкой и тестами только транзисторов и диодов дело не обходится. Впрочем, и измерять все параметры транзисторов наш гаджет не сможет, особенно те, которые касаются предельных токов, напряжений и частот.
Помимо измерения параметров радиодеталей и их характеристик, данный класс приборов автоматически распознаёт (не всё, конечно – зависит от конкретной модели и даже прошивки), что за электронные компоненты подключены к нему, их тип и разводку выводов (цоколёвку).
Поход к выбору модели
Сразу оговорюсь, что это сугубо мой личный подход со своими критериями по параметрам и характеристикам, что в итоге привело к покупке именно того прибора, который и будет обозреваться.
Мои требования к будущему тестеру транзисторов вылились всего в три пункта:
- Доступность по цене;
- Функциональность;
- Готовность к использованию из коробки.
Первый пункт сразу отрезал путь поиска в направлении профессиональных приборов, а последний заставил изучать ассортимент предложений на AliExpress, т.к. на рынке имеется множество подобных приборов, выполненных в виде готового конструктора (чаще – только в виде платы), для которого нужно ещё подобрать соответствующий корпус. Если вам не чужда работа с ножовкой или есть 3D принтер, то можете смело брать тестеры транзисторов в варианте «Только плата». На худой конец можно выбрать готовый корпус для таких плат.
Но так как я решил не заморачиваться с бескорпусными тестерами транзисторов, то мой список отбора сразу сократился до следующих моделей:
- BSIDE ESR02 PRO;
- Различные коробочные версии тестеров серии «М328» с монохромными и цветными дисплеями ;
- Тестеры серии TC1 (LCR-TC1);
- Тестеры серии T5 (LCR-T5);
- Тестеры серии T7 (LCR-T7 и T7-H).
Кратко рассмотрим возможности каждого из тестеров, а также их плюсы и минусы:
BSIDE ESR02 PRO


Данный прибор выделяется своим назначением – тестирование и измерение параметров мелких SMD деталей, для чего на его корпусе разработчики расположили несколько контактных площадок различной формы. В наличии также специальные контактные площадки для тестирования выводных деталей. Среди тестируемых деталей значатся диоды (в т.ч. составные), биполярные и полевые транзисторы, тиристоры симисторы, резисторы, конденсаторы и индуктивности. Кроме того, y некоторых продавцов указана возможность для данной модели автоматически определять стабилитроны с напряжением стабилизации не более 4,5 вольт.
Плюсы:
- Качественный корпус, на задней панели которого присутствует таблица допустимых значений ESR (Equivalent Series Resistance – эквивалентное последовательное сопротивление) конденсаторов в зависимости от их ёмкости и напряжения;
- Возможность питания от внешнего 12-вольтового адаптера в дополнение к автономной работе от батареи напряжением 9 вольт (типа «Крона»);
- Наличие места для размещения (не тестирования) мелких деталей;
- Площадка для разрядки конденсаторов;
- Информативная разметка контактных площадок;
- SMD щупы в комплекте;
- Подсветка дисплея.
Минусы:
- Малое разрешение экрана, которое накладывает ограничение на количественное и качественное отображение информации.
Стоимость на момент написания обзора (минимальное предложение со всеми скидками от продавца без учета купонов): 21,2$.
Тестеры серии «М328»


Данная серия тестеров транзисторов по функциональности практически ничем не отличается от предыдущей, за исключением того факта, что дисплей имеет большее разрешение, а информация может выводиться в цвете (для моделей с цветным дисплеем). В отличие от функционала, качество сборки у M328 сильно «гуляет» от модели к модели, и есть большой шанс приобрести неработоспособный прибор.
Плюсы:
- Большой информативный дисплей разрешением 128х160 пикселей (модели с монохромным дисплеем, как правило, с меньшим разрешением);
- Большое количество прошивок, которые подходят от одноименных бескорпусных моделей (например, серия FISH8840) и расширяют функционал прибора.
Минусы:
- Некоторые экземпляры «болеют» повышенным энергопотреблением;
- ZIF разъём плохо держится в разъёме самого тестера;
- Есть большой шанс приобрести прибор с низкокачественной сборкой.
Стоимость на момент написания обзора (без учета купонов): 13,9$.
Тестеры серии TC1, T5, T6 и T7




Данные тестеры внутрисхемно, внешне и функционально мало чем отличаются друг от друга, в том числе и по части интерфейса. Основное отличие между ними заключается в том, что модели TC1 и T7 оснащаются цветным дисплеем разрешением 128х160 пикселей (T7-H – 128х128), а T5 и T6 – монохромным разрешением 128х64 пикселей.
При этом модель T7 отличается от TC1, согласно документации от продавца, лишь небольшим приростом скорости в работе, а также тем, что у TC1 дисплей чуть-чуть больше. В свою очередь модель, T7-H выделяется значительно большим приростом производительности при снижении разрешения дисплея и напряжения для тестирования стабилитронов (20 вольт вместо 30 вольт у остальных моделей серии).
Модели T5 и T6 с монохромными дисплеями имеют тот же функционал, что и серия T7, за одним исключением: модель T5 не имеет отдельной площадки контактов для тестирования стабилитронов с напряжением стабилизации свыше 4,5 вольт. Тем не менее, исправные стабилитроны с напряжением стабилизации до 4,5 вольт определяются T5 автоматически (как и все модели серии).
В дополнение к стандартному набору проверки и тестирования диодов, стабилитронов, транзисторов (биполярных и полевых), тиристоров с симисторами, резисторов, конденсаторов и индуктивностей, в рассматриваемой линейке тестеров имеется возможность получения формы сигнала и его цифрового кода с ИК-пультов дистанционного управления, совместимых со стандартом Hitachi. Кроме того, все модели серии оснащены встроенным аккумулятором, который может заряжаться от любого зарядного устройства с microUSB-разъёмом.
Стоимость мультиметров с учетом стоимости доставки на момент написания обзора (без учета купонов):
- TC1: 13,88$
- T5: 25,8$
- T6: 31,96$
- T7: 13,82$
- T7-H: 16,13$
Плюсы:
- Высокая скорость работы;
- Более продуманный пользовательский интерфейс, который в полной мере задействует возможности цветного дисплея;
- Возможность проверять стабилитроны с повышенным напряжением стабилизации;
- Тестирование ИК-пультов (сомнительно);
- Компактные размеры;
- Питание от встроенного аккумулятора.
Минусы:
- Пока нет возможности задействовать в сторонних прошивках функционал по проверке стабилитронов с повышенным напряжением стабилизации (>4,5 В) и возможности ИК-датчика;
- После «заливки» в прибор сторонней прошивки нет возможности сделать откат на родную прошивку (кроме модели TC1).
Мой выбор
Из приведенных тестеров транзисторов практически сразу отпали модели LCR-T5 и LCR-T6 из-за своей высокой цены и небольшого предложения. Далее аналогичная участь ждала всю 328-ю серию из-за наличия больших проблем с качеством продукции. Модель BSIDE ESR02 PRO также уступила оставшимся моделям серии T7 и TC1 – в первую очередь из-за своей относительно высокой цены при чуть меньших функциональных возможностях, даже несмотря на более качественное исполнение. К тому же T7 и TC1 питались от аккумуляторов и имели цветные дисплеи большего разрешения.
Из оставшейся тройки приборов первой выбыла модель T7-H: при мало что значащей и не видимой на глаз повышенной скорости работы, она имела дисплей меньшего разрешения, а также обладала более узким диапазоном измеряемых стабилитронов (до 20 вольт вместо 30).
Если бы я делал покупки сегодня, а не месяц назад, то в итоге в обзоре, возможно, оказалась бы совсем иная модель тестера транзисторов. На момент покупки она стоила почти на 5$ дешевле остальных рассматриваемых моделей, и поэтому мой выбор пал на модель LCR-T7. Однако сейчас она стоит почти так же, как и TC1, которая имеет возможность отката на оригинальную прошивку. Но я не собирался проводить эксперименты по перепрошивке приборов, и поэтому мой выбор был в пользу более дешевой модели, как это ни банально.
Так что дальше нас ждёт небольшой:
Обзор тестера транзисторов LCR-T7
К моменту написания обзора по тестеру транзисторов как раз вовремя приехала из Китая паяльная станция на жалах типа T12, с помощью которой по-быстрому отпаял со сгоревшего блока питания от компьютера несколько радиодеталей, которые участвовали в испытаниях тестера:

Внешний вид
Прибор приехал в запаянном антистатическом пакете:

Внутри этого пакета лежали сам прибор, три щупа-зажима типа «крючок» с разъёмом DuPont, а также ещё один пакет с прочими аксессуарами:

Во втором антистатическом пакете лежали короткий microUSB-кабель для зарядки встроенного аккумулятора, трехконтактная перемычка для проведения самотестирования прибора, маленький электролитический конденсатор на 25 вольт и ёмкостью 10 микрофарад, а также красный светодиод для возможности перейти к проверке тестера прямо из коробки:

На передней панели прибора находятся дисплей, на котором отображается вся информация о тестируемых деталях, всего одна кнопка, с помощью которой производится всё управление, ZIF-разъём, в который вставляются проверяемые детали или щупы в случае, если детали слишком крупные или очень мелкие. А между кнопкой и разъёмом находится небольшое круглое окошко для ИК-фотодиода, с помощью которого LCR-T7 определяет форму сигнала с пультов дистанционного управления и их цифровые коды.
Сам ZIF-разъём имеет несколько дублирующих контактных площадок, пронумерованных 1-2-3, а также отдельный блок контактов в нижнем левом углу для тестирования стабилитронов с повышенным напряжением стабилизации (>4,5 В) и обозначением КАА (катод-анод-анод). Следует учитывать, что в этом блоке «распиновка» стабилитронов не определяется автоматически и их нужно подключать так, как указано в обозначении контактов.
Снизу корпуса прибора находится microUSB-разъём, через который подзаряжается прибор, и светодиодный индикатор состояния зарядки (красный – идёт процесс разрядки, а зелёный сигнализирует об окончании этого процесса):

Первое включение
Короткое нажатие на единственную кнопку прибора запустит процесс определения и тестирования вставленной в него радиодетали:

На экране выводятся сообщение о том, что проводится процесс тестирования, информация о напряжении встроенного аккумулятора и подсказка с распиновкой ZIF-разъёма. По окончании тестирования, если в прибор не была вставлена радиодеталь или же она оказалась неисправной, а также если она не поддерживается для распознавания, получим такое сообщение:

Через 20 секунд или меньше, в зависимости от заводской настройки прибора, он выключится автоматически. Его можно также выключить вручную – длительным нажатием кнопки. Короткое нажатие на кнопку запустит повторный тест.
Перед началом тестирования радиодеталей тестер транзисторов рекомендуется откалибровать. Делается это очень просто: для этого необходимо вставить в выключенный тестер тройную перемычку из комплекта поставки, замкнув все три контакта 1-2-3 (в любом месте), а затем нажать на кнопку «Start». После этого запустится самодиагностика прибора:

Через некоторое время прибор попросит избавиться от перемычки и продолжит процесс самотестирования, который завершится выводом информации о версии микропрограммного обеспечения прибора:
После этого уже можно приступить непосредственно к:
Проверка радиодеталей
Для проверки радиодеталей их выводы необходимо подключить к прибору, вставив их непосредственно в ZIF-разъём или с помощью щупов-зажимов из комплекта. Выводы нужно подключать так, чтобы они попали в контактные площадки под разными номерами, т.е. трехвыводные детали обязательно должны быть на контактных площадках под номерами 1-2-3, тогда как двухвыводные – в любых двух из трёх.
Обычный резистор на 51 Ом с 5-процентным допустимым отклонением от номинала:

Прибор правильно определил, что вставленная деталь – это резистор с сопротивлением 50 Ом (отклонение 2%, что в пределах нормы), который был подключен к контактным площадкам прибора под номерами 1 и 2.
Трехвыводные переменные резисторы тоже можно проверить:
Определение обычных конденсаторов и их ёмкости:
При тесте электролитических конденсаторов, помимо их ёмкости, определяется эквивалентное последовательное сопротивление (ESR) и нестандартный параметр Vloss (падение напряжения, выраженное в процентах):
Хотелось бы немного пояснить по поводу эквивалентного последовательного сопротивления, вернее, наличия великого множества таблиц допустимых значений ESR для электролитических конденсаторов, которые присутствуют на просторах Всемирной паутины. Дело в том, что производители в спецификациях на каждый тип конденсаторов указывают свои допустимые величины этого параметра. Поэтому одно и то же значение ESR для конденсаторов одинаковой ёмкости и напряжения, но различного типа (напр., алюминиевого и танталового), будет указывать на то, что танталовый конденсатор более низкого качества, (вероятность того, что алюминиевый конденсатор получился сравнимым по качеству с танталовым, очень низкая).
Отсюда вывод – ищите правильные таблицы для своих конденсаторов, чтобы не отправить на свалку исправную деталь.
А вот что касается отображаемого параметра Vloss, то тут, как правило, имеется в виду падение напряжения во время измерения ёмкости конденсатора, выраженное в процентах. И чем оно ниже, тем лучше.
Вот, например, другой электролитический конденсатор с очень маленьким значением ECR, но с Vloss вдвое большим, чем у предыдущего экземпляра:
Обычный диод:
Тестер автоматически определяет, что это диод, к каким контактам подключены анод и катод, а также выводит его параметры: напряжение падения (Uf=703 мВ), ёмкость p-n перехода (C=4 пФ) и ток утечки (Ir=31 нА).
При тестировании диодов Шоттки прибор не показывает ёмкость (у таких диодов нет привычного p-n перехода):

Прибор отлично справляется с определением сдвоенных диодов, показывая для каждого из диодов напряжение падения:
Микросхема стабилизатора напряжения TL431 также определяется как сдвоенный диод:
Обычные биполярные транзисторы:
Тут мы видим:
- Тип транзистора (BJT – Bipolar Junction Transistor, т.е. биполярный транзистор);
- Проводимость (PNP или NPN);
- К каким контактам подключены база (B), коллектор (C) и эмиттер (E);
- Коэффициент усиления по току в схеме с общим эмиттером (hFE);
- Напряжение перехода база-эмиттер (Ube);
- Ток коллектора, при котором производилось измерение (Ic).
Полевой транзистор:
Тут отображаются:
- Тип транзистора (MOS, он же MOSFET – Metal–Oxide–Semiconductor Field-Effect Transistor, металл-оксидный-полупроводниковый транзистор с полевым эффектом);
- Тип MOSFET транзистора (N-E: МОП транзистор с индуцированным N-каналом);
- К каким контактам подключены исток (Source), сток (Drain) и затвор (Gate);
- Vt – напряжение открывания перехода;
- Cg – ёмкость затвора;
- Rds – прямое сопротивление открытого канала d (сток) – s (исток);
- Uf – напряжение падения на защитном (паразитном) диоде и схема его включения.
Мощные симисторы и тиристоры прибор определяет как резисторы:
Хотя такое поведение может быть и с неисправными полупроводниками.
С маломощными симисторами ситуация с их определением вполне нормальная:
Стабилитронов в моей коллекции не оказалось, поэтому для проверки выделенной контактной площадки для стабилитронов, в которой они проверяются, я использовал обычные диоды, которые также могут выступать в этой роли (если ток небольшой):

Исправные дроссели показывают индуктивность и сопротивление:

Несправный дроссель, который имеет большее количество витков и больший диаметр сердечника, показывает на приборе мизерное значение индуктивности и малое сопротивление, что указывает на наличие межвиткового замыкания в нём:

Справляется прибор и с определением обычных батареек, но долго (как с конденсаторами):

И напоследок – неоднозначная функция проверки формы сигнала с пультов дистанционного управления и получения цифрового кода:

Здесь красный кружок в верхнем правом углу говорит о том, что прибор получает сигнал по ИК-каналу. Ниже – форма сигнала и его цифровой код для значения UserCode (он же код производителя – для одного пульта ДУ не меняется), а чуть ниже – аналогичные данные для DataCode, управляющего кода с клавиш пульта управления. Единственное место, где это может пригодиться – универсальные пульты управления, которые программируются по коду производителя с неизвестной маркой.
Вывод
Хороший прибор в качестве дополнения к мультиметру, который, однако, не заменяет его. Может сильно выручить в ситуациях, когда у детали стёрта маркировка и ты не знаешь не то что распиновку, а даже вид радиодетали. С ним легко подобрать детали с близкими характеристиками, особенно если деталей очень много. Но стоит учитывать, что полагаться на точность показаний таких приборов не стоит.
Какой из приборов себе брать – каждый решает сам исходя из своих требований. Тем более что такой прибор можно собрать и самому.
Ссылки по теме
- Лаборатория радиолюбителя с нуля. Часть 1. Муки выбора мультиметра
- Лаборатория радиолюбителя с нуля. Часть 2. Обзор таинственного мультиметра
- Мелочи жизни радиолюбителя