Tester yadite 8848 инструкция по русский

Содержание

  1. Содержание
  2. Виды и принцип работы индикаторной отвертки
  3. Способы применения
  4. Модели и их способности
  5. Как проверить индикаторную отвертку?
  6. Сфера использования
  7. Принцип работы
  8. Разновидности отверток
  9. Как использовать простой тестер
  10. Применение индикатора со светодиодом
  11. Принцип работы универсальных тестеров
  12. Проверка разных устройств
  13. Контактным методом
  14. Поиск положения выключателя
  15. Бесконтактным методом
  16. Определение участка обрыва
  17. Проверка работоспособности индикатора
  18. Инструкции, ПО и прочий софт для TESTER 6885-48NS
  19. Обзоры и статьи TESTER 6885-48NS
  20. Отзывы покупателей о TESTER 6885-48NS

Временами в доме возникает проблема с электрической проводкой и электроприборами. Вызывать при каждом случае специалиста не всегда удобно (время ожидания, оплата услуг), да и не всегда целесообразно. Большинство неисправностей можно легко устранить самому в считанные минуты. Например, при потере контакта в розетке или выключателе. Но для этого необходимо найти проблемное место и устранить неисправность. А как найти, если электрический ток невидим и опасен? Да и проводник или в стене спрятан, или в изоляционном материале.

Значит для этих целей, нам необходим надежный и недорогой прибор (дорогой для простых работ с электрическими цепями просто ни к чему), который позволял бы нам «увидеть» где есть напряжение, а где нет. Этот универсальный и доступный прибор – индикаторная отвертка. О ней и пойдет речь в данной статье.

Содержание

Виды и принцип работы индикаторной отвертки

Для успешного использования любого устройства необходимо понимать, на чем основан его принцип работы. Это же актуально и для индикаторной отвертки. Знание о том, как она устроена и работает, хотя бы в общих чертах, позволит эффективно ее применять, и избавит от ошибок. Кроме того это позволит обходиться без более сложного и дорогостоящего мультиметра.

Рассмотрим несколько основных видов индикаторных отверток, это в дальнейшем позволит нам подобрать более подходящий вариант.

Обычный пробник напряжения с неоновой лампой. Принцип работы индикаторной отвертки следующий. Электрический ток с поверхности проводника попадает на жало отвертки, далее через резистор с номиналом не менее 0,5 мОм (ограничивает ток) попадает на контакт неоновой лампы. Второй контакт цепи включения лампочки через контакт на рукоятке отвертки замыкается на человеке. У такого типа отвертки емкость и сопротивление тела человека включены в цепь лампочки. То есть прикоснулись жалом к проводу и пальцем к контакту, если есть напряжение – видим свечение неоновой лампочки. Нет контакта с человеком – лампа не светится. Минусом такого типа отверток является высокий порог индикации напряжения, от 60В. Они хороши лишь для определения наличия напряжения и фазы. Определить обрыв цепи при помощи данного инструмента невозможно.

Отвертки со светодиодным индикатором. Принцип работы аналогичен отвертке с неоновой лампой. Основным отличием является более низкий порог индикации напряжения, светодиод будет светиться от напряжения меньшего, чем 60В.

Отвертки со светодиодным индикатором и автономным источником питания (батарейками). Это уже многофункциональная индикаторная отвертка. Кроме источника питания в такую отвертку также включен транзистор, обычно биполярный. Она обладает пятью функциями:

  • определитель фазы;
  • определять обрыв цепи;
  • позволяет найти место повреждения в проводнике;
  • определять полярность источников постоянного тока;
  • при помощи способности определения наличия напряжения бесконтактным способом можно находить место расположения проводки (данный эффект основан на наведении величины магнитного поля).

Некоторые варианты таких отверток способны также определять микроволновое излучение, например у микроволновых печей.

Электронная индикаторная отвертка. Может быть в двух вариантах: с ЖК-дисплеем или без. Оснащены звуковой сигнализацией наличия напряжения. По сути это уже упрощенный и очень удобный мультиметр. ЖК-дисплей позволяет не только определять наличие напряжения, но и его величину (от 12В до 220В). Принцип работы в общих чертах аналогичен предыдущим аналогам индикаторных отверток. Саму схему такого устройства приводить не будем, вряд ли при поломке такой отвертки Вы будете искать на радиорынке неисправные элементы, и менять их. Время, затраченное на ее ремонт, попросту не окупится стоимостью нового инструмента.

Способы применения

Рассмотрев виды, давайте познакомимся с тем, как правильно пользоваться индикаторной отверткой. Прежде всего, необходимо помнить о правилах безопасности при работе с электросетями. Основное правило заключается в том, что все монтажные и ремонтные работы в электрических цепях необходимо проводить с отключенными пакетными выключателями, которые установлены в местах ввода в жилище. Не разбирайте розетку, переноску или настольную лампу при наличии напряжения в сети квартиры или дома.

Так же необходимо понимать принцип устройства электропроводки и приборов которіе ее потребляют. Основное правило: электрический ток всегда течет по проводнику по пути наименьшего сопротивления, от плюса к минусу. Любой электроприбор работает только тогда когда плюс или фаза через электрическую цепь этого прибора попадет в минусовой или нулевой провод сети. И никак иначе. Если эта цепь разорвана или перекрыта (транзистором, диодом и др.) – прибор работать не будет. Для электроники и сложных электроприборов индикаторная отвертка мало пригодна. Но для проверки исправности цепи до этих приборов – исключительно удобная вещь.

По принятым стандартам в наших домах используются сети с напряжением 220В и частотой 50Гц. Сеть однофазная, т.е. напряжение всегда приходит по одному проводу – его и называют фазой (+). Второй провод – ноль, обратный провод, ведущий на трансформатор (-). Наличие третьего провода в розетке – заземление. На работу электрических приборов не влияет. Этот провод служит для нашей безопасности, напряжение, попав на металлический корпус прибора, пойдет в землю и нас не «ударит».

При любом ремонте электропроводки необходимо убедится в отсутствии фазы. Помним два провода, один фаза – бьется и ноль – не бьется. Для того что бы определить «кто из них кто» и нужна индикаторная отвертка. Вставляем в розетку или прикасаемся к проводнику, если светится – фаза, нет – ноль. Это важно в случае подключения осветительных приборов и выключателей к ним. На выключатель должна попадать фаза, так же на центральный контакт патрона для лампы должен приходить плюс.

Для того что бы проверить включенные электроприборы на пробой фазы на корпус достаточно прикоснутся к любой розетке, если она имеет подключенные заземляющие контакты. Те, что по краям розетки выступают. Если лампочка горит или слышим звуковой сигнал – какой-то из приборов пробивает на корпус. Для определения такого прибора, их достаточно по очереди выключать и сети, при этом постоянно проверяя заземляющий контакт на наличие напряжения. Когда индикатор погаснет, прибор в котором происходит утечка напряжения, найден.

Данные виды работы доступны обычным отверткам. Если мы обладаем индикаторной отверткой с батарейками, тогда можем значительно больше. Так для определения целостности лампы достаточно одной рукой держать цоколь, а второй касаясь пятачка отвертки приставить жало к центральному контакту лампы. Если индикатор светиться/пищит – лампа цела.

Точно так же проверяется провод на обрыв. Берем в руку один зачищенный конец провода или за один из контактов вилки, а ко второму касаемся жалом отвертки. Если провод цел – отвертка засветится, если обрыв – реакции не будет никакой. Конечно же, проводник должен быть без напряжения! Кстати проверка провода через вилку возможна только в электроприборах и только при включенном выключателе, иначе цепь будет разомкнута. Удлинитель таким образом проверить невозможно.

Для проверки работоспособности удлинителя при помощи индикаторной отвертки нам необходимо отключить его от сети и от электроприборов. Берем кусок провода и зачищаем концы. Вставляем в любую розетку удлинителя, так что бы контакты были закорочены. Берем вилку и один контакт держим рукой, а второго касаемся отверткой. Если цепь удлинителя исправна отвертка будет светиться. Не забудьте забрать перемычку – иначе закоротите проводку при включении в сеть.

Если не светится – подключаем удлинитель в сеть, берем отвертку за жало и рукояткой отвертки медленно ведем вдоль провода. В месте, где отвертка перестанет светить или потеряет интенсивность индикации – место повреждения. Отключаем от сети удлинитель, берем кусачки, снимаем изоляцию в месте повреждения, находим обрыв и скручиваем провода. Изолируем и пользуемся далее. Или покупаем новый удлинитель, кому как нравится.

Для определения местонахождения проводки в стене процедура аналогична. Держим отвертку в руке за жало, и проводим вдоль стены – где ярче светится там и проводка, т.к. индикатор реагирует на электромагнитное поле создаваемое током в проводнике. Минусом данного способа нахождения скрытой проводки является его низкая точность. А в панельных домах вообще безнадежное дело, так как арматура в плитах будет создавать свое магнитное поле.

Как видим, область применения такого инструмента довольно широка, всех случаев применения не перечесть. Можно даже проверить, не пробит ли диод.

Модели и их способности

В этой части статьи приведем некоторые наиболее удачные модели и рассмотрим их характеристики.

Начнем мы с модели СВЕТОЗАР MS-48S SV-45203-48. Модель имеет удобный дизайн, оснащена световой и звуковой индикацией наличия напряжения. Регулируемая чувствительность «пробника» позволяет более точно определять место нахождения повреждения или скрытой проводки. Хотя последнее все же имеет ощутимую погрешность. Стоимость такого инструмента в пределах 3 -4 у.е.

Индикаторная отвертка Энергия 6878-28NS. В наличии все доступные функции, номиналы отображаемой величины напряжения на дисплее 12В, 36В, 55В, 110В и 220В. Изюминкой данного устройства является отсутствие батареек, при этом все функции доступны. При этом стоимость чуть более доллара.

Отвертка индикаторная SafeLine многофункциональная MS-18. Доступны пять функций, стоимость 1,5 – 2 у.е.

И, конечно же «классическая» индикаторная отвертка Visting на фото ниже. Проста и надежна, и цена – 0,5 у.е.

На самом деле выбор индикаторных отверток огромен, ценовой диапазон очень широк от 0,3 до 15 -20 у.е. за экземпляр. Зная свои потребности и возможности, Вы с легкостью подберете для себя оптимальный вариант.

Как проверить индикаторную отвертку?

Поскольку индикаторная отвертка предназначена для работы с напряжением, очень важно постоянно следить за ее исправным состоянием. Корпус должен быть целым, без трещин. Каждый раз перед началом работ удостоверьтесь в ее работоспособности. Проверьте исправность, прикоснувшись к проводнику, в котором есть напряжение. Если отвертка с источником питания – коснитесь жала и пятачка на рукоятке – она должна светиться.

Если корпус поврежден – замените отвертку, Ваша безопасность гораздо дороже ее стоимости. В отвертках с батарейками необходима их периодическая замена. Процедура достаточно проста, откручиваем колпачок, вынимаем старые батарейки и вставляем новые. Главное не перепутать полярность в батарейках — работать не будет. При выемке «начинки» запоминайте последовательность расположения элементов, тогда отвертка будет служить долгие годы.

При возникновении поломок в самой отвертке ремонтировать ее нет смысла. Цена новой не стоит затраченного времени. Правда если у Вас есть несколько одинаковых неисправных отверток, тогда можно попытаться сложить одну работоспособную.

И всегда будьте осторожны при работе с электросетями и приборами. Лучше не спеша несколько раз перепроверить результат измерений, чем получить удар электрическим током.

О том, как использовать отвертку тестер, знают совершенно не все люди, хоть это довольно простой инструмент, который имеет очень широкий функционал и сможет помочь в самых различных ситуациях: от установки электротехнических устройств в распределительном щитке до проверки работы обычных розеток.

Сфера использования

Отвертка-индикатор, которую в народе называют тестером, или отвертка пробник, имеет довольно простой принцип действия и конструкцию, но при этом выполняет одну из наиболее частых функций, которые требуются в электрическом монтаже — проверка работоспособности приборов или сети.

Например, нецелесообразно применение многофункционального и дорогого оборудования для решения такой задачи, как проверка работы розетки — при помощи индикаторной отвертки это можно выполнить за несколько секунд без необходимости разбора устройства. В определенных ситуациях может появиться необходимость определения фазной жилы, для того чтобы подключить электротехнику без риска ее перегорания. В этом случае отвертка-тестер также будет лучшим помощником.

Принцип работы

Конструкция отвертки-тестера включает в себя резистор и металлическое жало. Последнее необходимо для подачи на инструмент электричества с тестируемого провода, а резистор преобразует до безопасных величин параметры тока. В цепи в роли индикационного элемента после резистора находится светодиод или неоновая лампочка, которая соединена на торце рукоятки с токопроводящим пятачком.

Принцип работы прост. Жало отвертки (щуп) нужно приложить к запитанному контакту, а на рукоятке к пятачку прикладывается палец. Получается замкнутая цепь палец-светодиод-резистор, по которой прохождение преобразованного тока приводит к свечению неоновой лампочки.

Разновидности отверток

Данный принцип находится в основе работы всех отверток-тестеров. Однако их варианты и количество технического исполнения сегодня очень велики:

  1. Простые пробники — это отвертки со стандартным составом рабочих элементов, которые были описаны ранее и полым пластиковым корпусом. Для индикации, как правило, применяются неоновые лампы, а нулевой фазой является непосредственно человек, касающийся контактной пластины. Сфера использования и функциональность отвертки немного ограничены тем фактом, что изделие не работает при напряжении в сети менее 60 В. Определить контактную жилу, проверить фазу при помощи отвертки можно, но вот отыскать обрыв в цепи — вряд ли получится.
  2. Тестеры со светодиодами. Данные устройства чуть отличаются от вышеописанных своей конструкцией и, естественно, функционалом. Применение светодиода в роли элемента индикации дает возможность проверять работу цепей с напряжением менее 60 В. Соответственно, при помощи этого прибора можно проверять внутренние схемы электрооборудования, определять целостность предохранителей, проводов, обрывы. В пробниках этого типа часто применяется биполярный транзистор и автономный источник питания, благодаря им появляется возможность бесконтактной проверки.
  3. Универсальные отвертки-тестеры имеют наиболее широкие возможности: «прозвон» сетей на короткое замыкание, бесконтактное и контактное тестирование, звуковая и световая индикация, определение обрывов цепи. Помимо этого, у них довольно низкий порог реагирования, засчет чего эти отвертки могут применяться в настройке и ремонте цепей переменного и постоянного тока в транспорте, бытовых условиях, электронных устройствах и т. д. Основной недостаток — наличие своего источника питания. Если сядет батарея, то тестер будет совершенно бесполезным.

Выбор определенного устройства связан напрямую с совокупностью работ, которые необходимо выполнять с его помощью. Непосредственно в категориях отличие между устройствами небольшое — отвертки просты в исполнении, потому бюджетные изделия в качестве мало уступают более дорогостоящим.

Как использовать простой тестер

В этом разделе речь пойдет о простых отвертках-индикаторах, внутри которых находится неоновая лампочка. Естественно, они подходят для самых элементарных задач — определить нагрузку на розетке или найти фазную жилу в кабеле. Для этого необходимо розетку взять в руку таким образом, чтобы один палец прилегал плотно в торце рукоятки к контактной площадке, а другие пальцы не контактировали с жалом розетки (по нему проходит ток 220В).

Затем щуп вставляется поочередно в каждое отверстие розетки, которая находится предположительно под напряжением. Во время контакта с одним из них индикатор начинает гореть. Если этого не происходит, значит на розетку ток не попадает.

Из-за высокого порога реагирования эти устройства не подходят для более точного «прозванивания». Необходимо обратить внимание, что щуп индикатора обязательно должен прикладываться только к одному из жильных проводов кабеля или контактов, так как недопустимо замыкание между собой фазы и нуля.

Применение индикатора со светодиодом

Как уже было выше описано, светодиодные отвертки могут поддерживать режим бесконтактного тестирования. Это обозначает, что человеку, который осуществляет проверку, не надо замыкать своим пальцем внутри прибора электрическую цепь. Этот высокочувствительный режим дает возможность очень удобно и быстро находить в каркасных конструкциях и стенах скрытую проводку, определять наличие напряжения на компонентах электрооборудования или кабелях.

Для этого необходимо только поднести «пятку» к проверяемому объекту — часть конструкции, куда прикладывается палец во время контактной проверки. Причем часто достаточно не прикладывать контакт к проводу, а только поднести к нему — чувствительности устройства достаточно, чтобы загорелся светодиод. При поиске фазы в розетках необходимо действовать так же, как было описано в примере с простым тестером.

У бесконтактного варианта проверки существует небольшой недостаток — отвертка может отреагировать на наводку и указывать на напряжение даже во время обрыва в цепи. У светодиодных индикаторов перед более простыми моделями существуют значительные преимущества — более яркое свечение, а также можно работать с напряжением менее 60 В. Излучение неоновой лампы бывает просто незаметным, если она используется на улице или в хорошо освещенном помещении — необходимо затемнять рукоятку, чтобы определить, горит она или нет.

Принцип работы универсальных тестеров

Универсальные тестеры по принципу применения и действия мало чем отличаются от вышеописанных до этого приборов. Однако они меньше всего напоминают классическую отвертку, а больше похожи на электронный градусник. Самые продвинутые устройства оборудованы цифровым табло, где показывается величина напряжения. Эта функция довольно полезна, однако поднимает стоимость изделия до такой величины, что отличной альтернативой за эти деньги будет полноценный мультиметр.

Кроме табло все универсальные тестеры имеют контактную площадку для зануления пальцем цепи и тумблер переключения режимов работы. На тумблере находятся такие режимы:

  • H — бесконтактный высокочувствительный режим. Требуется для поиска трасс скрытой электрической проводки.
  • L — бесконтактный режим. В этом случае индикатор подает звуковой или световой сигнал во время реакции на электрическое поле (подносится контактная часть к проверяемому объекту).
  • О — контактный режим. Работает, как и у простых устройств: палец — на контактную площадку, щуп — на токопроводящий элемент.

Сказать точно о том, какая модель универсального тестера лучше, почти невозможно — все будет зависеть от сферы применения и требований.

Проверка разных устройств

Контактным методом

Для того чтобы узнать целостность внутренней цепи электролампы, необходимо:

  1. Щуп индикатора приложить к входному контакту лампы.
  2. На контактную пластину отвертки приложить палец руки.
  3. Второй рукой взяться за цоколь лампы для того, чтобы между руками замкнуть цепь.
  4. Если устройство загорается, то лампа рабочая.

Тестер позволяет с легкостью проверить обрыв внутренней цепи и рабочее состояние электрического ТЭНа на наличие к корпусу пробоя. В обоих случаях необходим универсальный или светодиодный прибор.

Проверка на пробой:

  1. Для того чтобы выявить контакт прибора с корпусом токоведущих элементов, необходимо взять его в руку — она является источником электрического заряда.
  2. Второй рукой надо взять тестер таким образом, чтобы один палец располагался на контактной пластине, и по очереди приложить щуп к клеммам ТЭНа.
  3. Во время наличия пробоя цепь замкнется, и устройство загорится (покажет фазу) — ТЭН необходимо менять.

Поиск положения выключателя

Все выключатели в доме по умолчанию обязаны быть в таком положении, чтобы для включения необходимо было нажимать на верх клавиши, а для выключения — на нижнюю часть. Из-за чего во время установки появляется ситуация, когда клавишу необходимо после установки переворачивать по причине того, что она нижней частью замыкает цепь. При помощи отвертки-тестера, заранее «прозвонив» схему, данной проблемы можно избежать.

Бесконтактным методом

После установки люстры с несколькими лампами появляется необходимость определения правильности соединения. При помощи универсального тестера это выполнить очень просто — необходимо переключить устройство в требуемый режим (H или L) и поднести к выключенной люстре.

Если после этого прозвучит звуковой сигнал, и загорится соответствующая лампочка, то около светильника находится электрическое поле, соответственно, провода подсоединены с общим фазным проводом неправильно. Если все выполнено с соблюдением правил требований безопасности, то индикатор будет срабатывать только во время включения света.

Определение участка обрыва

Во время питания электрических приборов с помощью удлинителя появляется ситуация, когда в сети обрыв очевиден, но точно не известно, в каком месте он расположен. Если розетка в рабочем состоянии, то нужно проверить кабель удлинителя и устройства на наличие обрыва. Для этого необходимо включить прибор в сеть и тестером провести по всей длине цепи в режиме L. На участке, где прибор не реагирует на наличие электрического поля, произошел обрыв.

Если на всем протяжении не найдена неисправность, то необходимо заново провести процедуру, перевернув в выключателе вилку, чтобы ток пошел по другой жиле кабеля. Если и в этом случае не будет найден обрыв, то проблему необходимо искать непосредственно в инструменте.

Проверка работоспособности индикатора

Прежде чем использовать отвертку-тестер, необходимо непременно проверить ее работоспособность и целостность. От этого будет зависеть как точность показаний, так и безопасность человека, который пользуется прибором.

В первую очередь, нужно обратить внимание на целостность корпуса — если на корпусе находятся сколы, трещины и иные повреждения, то замените тестер. Новый недорого будет стоить, а последствия удара током могут быть очень серьезными.

Проверьте на розетке работу индикатора, находящейся под напряжением либо же замыканием руками внутренней цепи (один палец приложить к жалу, а второй к «пятке»). Если индикатор не горит, то могут быть различные причины. Наиболее частая — севшие батарейки. С тем чтобы их поменять, справится каждый человек. Необходимо раскрутить корпус прибора, поменять элемент питания на новый и в том же порядке собрать. Не забывайте, что батарейка устанавливается с соблюдением полярности, иначе отвертка работать не будет.

Если причиной выхода из строя является не элемент питания, то ремонт целесообразен только из спортивного интереса — намного проще приобрести новый тестер. Исключение составляет ситуация, когда у вас скопился арсенал поломанных отверток, из которых можно самому собрать работающее изделие. И все время будьте осторожны во время работы с приборами и электросетями. Лучше несколько раз не спеша перепроверить результат измерений, нежели получить удар током.

  • Напряжение: 70В — 1000В
  • Питание: 2хLR44
  • Габариты: 20х140х14 мм
  • Вес: 23 г

Компании более 10 лет Доставка по всей России Техническая поддержка Русифицированное ПО Более 100 000 товаров

Бесконтактный тестер напряжения

  • Напряжение: 70В — 1000В
  • Питание: 2хLR44
  • Габариты: 20х140х14 мм
  • Вес: 23 г

Бесконтактный тестер и его основные возможности:

  • Определение фазного провода и правильности монтажа розеток и другого электрооборудования.
  • Определение обрыва фазного провода.
  • Определение правильности подключения электросчетчиков, без нарушения пломб.

Очень удобно лежит в руке, работает от 2х LR44 батареек, имеет светодиодную подсветку и при обнаружении фазы издает звуковой сигнал и световой индикатор загорается красным. Устройство может определять провод на расстоянии.

Три режима работы:

Q — контактный способ опредленния напряжения (красный светодиод)

L — бесконтактный способ определения (поиск скрытой проводки, опеделенние полярности сети, проверка электро магнитного излучения)

H — усиленный режим бесконтактного определения ( безконтактный способ определенния (поиск скрытой проводки, опеделенние полярности сети, проверка электро магнитного излучения)

  • Бесконтактный тестер — 1 шт.
  • Батарейки — 2 шт.

Инструкции, ПО и прочий софт для TESTER 6885-48NS

У товара нет загрузок.

Обзоры и статьи TESTER 6885-48NS

У товара нет обзоров и статей.

Отзывы покупателей о TESTER 6885-48NS

Нет отзывов об этом товаре.

Вы можете быть первым. Оставьте свое мнение прямо сейчас.

Цифровой мультиметр DT-831

  • Измерение напряжения
  • Измерение силы тока
  • Проверка транзисторов
  • ЖК-дисплей
  • Режим «прозвонка»
  • Защита от перегрузки
  • Габариты: 68x125x25 мм
  • Вес нетто: 110 г

  • Тип: Тестер провода
  • Коннекторы: RJ11/RJ45/BNC
  • Устройства: передатчик и приемник
  • Питание: 1х6LR61

  • Измерение напряжения
  • Измерение силы тока
  • Проверка транзисторов
  • ЖК-дисплей
  • Режим «прозвонка»
  • Защита от перегрузки
  • Габариты: 126x70x28 мм
  • Вес нетто: 137 г

Бесконтактный тестер напряжения

  • Напряжение: 90В — 1000В
  • Питание: 2хААА
  • Габариты: 17х148х19 мм
  • Вес: 23 г

  • Измерение постоянного напряжения: 200м — 2000м -20-200-1000 В
  • Измерение переменного напряжения: 200-750 В
  • ЖК-дисплей с разрядностью 3,5
  • Индикатор перегрузки
  • Габариты: 126x70x28 мм
  • Вес нетто: 137 г

Мультисканнер Stud Finder SF-19WM

  • Дальность: 19 мм
  • Питание: 9В (1х6LR61)
  • Габариты: 25х56х10
  • Вес: 70 г.

Цифровой мультиметр DT-182

  • Измерение напряжения
  • Измерение силы тока
  • Проверка транзисторов
  • ЖК-дисплей
  • Режим «прозвонка»
  • Защита от перегрузки
  • Габариты: 50x99x18 мм
  • Вес нетто: 53 г

Тестер для батареек универсальный

  • Форм фактор батареи: Универсальный
  • Мощность батареи: от 1.5В до 9В
  • Габариты: 110х60х25 мм
  • Вес: 60 гр

  • Тип: USB-тестер
  • Диапазон напряжения: от 3 до 30 В
  • Поддержка протоколов: QC 2.0, QC 3.0, BC 1.2 и др
  • Размер: 65х25х15 мм
  • Вес: 16 г

  • Измерение напряжения
  • Измерение силы тока
  • Проверка транзисторов
  • ЖК-дисплей
  • Режим «прозвонка»
  • Защита от перегрузки
  • Габариты: 126x69x22 мм
  • Вес нетто: 138 г

Тестер для батареек универсальный

  • Форм фактор батареи: Универсальный
  • Мощность батареи: от 1.5В до 9В
  • Габариты: 110х60х25 мм
  • Вес: 60 гр

Тестер мультиметр цифровой

  • Измерение напряжения
  • Измерение силы тока
  • Измерение изоляции
  • ЖК-дисплей
  • Режим «прозвонка»
  • Защита от перегрузки
  • Габариты: 240x70x33 мм
  • Вес нетто: 200 г

Информируем Вас о том, что размещенная информация на нашем интернет-магазине содержит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями ст. 435 и ст. 437 Гражданского Кодекса РФ. Администратор сайта и сайт – не используют отображаемые на данном интернет-магазине товарные знаки в рекламных целях и не заявляют о своих исключительных правах на них. Зарегистрированные в установленном порядке товарные знаки (знаки обслуживания) являются собственностью их правообладателей и используются исключительно с целью идентификации представленного товара и информирования пользователей данного сайта о потребительских свойствах товаров и услуг. Наш интернет-магазин считает своим долгом обеспечить максимальную достоверность и полноту всей содержащейся информации, но, не дает абсолютной гарантии её достоверности и не несет ответственности за ошибки, несоответствия или неполноту информации, а также результаты её использования без предварительной консультации с нашими сотрудниками. Для получения подробной информации о наличии и стоимости указанных товаров и (или) услуг, пожалуйста, обращайтесь к менеджерам отдела клиентского обслуживания с помощью специальной формы связи или по телефону, позвонив по указанным на интернет-магазине номерам телефонов.

Вы можете сообщить о неточности в описании товара – выделите её и нажмите

Детекторы скрытой проводки.


> Тестер
«карандашного» типа
S48NS

> Сигнализатор
скрытой проводки Е121

>
Логический
пробник

Выпускаемые
промышленно детекторы часто комбинированы – в них содержится несколько
типов
обнаружителей:
·         Электростатические.
За – просты, большая
дальность обнаружения.
Против – не работают на влажных стенах (показывают, что проводка
везде).
Требуют наличия напряжения в проводке.

·         Электромагнитные.
За – просты, хорошая точность
обнаружения.
Против – требуют не только напряжения в сети, но и того, чтобы провод
был
нагружен на мощную нагрузку, обычно порядка киловатт.

·         Металлодетекторы.
Просто ищут, метал в стенах. За – можно искать без напряжения
в сети.
Против – сложны, мешают посторонние металлы. Если где-то рядом
забит гвоздик, то ничего хорошего не получится.


Индикаторы
скрытой
проводки

Резистор
R1 нужен для защиты микросхемы К561ЛА7 от повышенного напряжения
статического
электричества (как показала практика, его можно и не ставить). Антенной
является кусок медного провода любой толщины. Главное, чтобы он не
прогибался
под собственным весом, т.е. был достаточно жестким. Длина антенны
определяет чувствительность
устройства. Наиболее оптимальной является величина 5…15 см. При
приближении
антенны к электропроводке детектор издает характерный треск.

Устройством
удобно
определять местоположение перегоревшей лампы в елочной гирлянде — возле
нее
треск прекращается. Пьезоизлучатель типа ЗП-3 включен по мостовой
схеме, что
обеспечивает повышенную громкость.

На рис.2
изображен детектор, имеющий
звуковую и световую индикацию.

Сопротивление
резистора R1 должно быть не менее 50 МОм. В цепи светодиода VD1 нет
токоограничивающего резистора, микросхема DD1 (К561ЛА7) с этой функцией
хорошо
справляется сама.

СХЕМА ИНДИКАТОРА
СКРЫТОЙ ПРОВОДКИ.

Детали:
— C1…С5 — 10 мкФ;
— VT1 — KT209х или КТ361х;
— VT2 — KП103х;
— VT3 — КТ315х, КТ503х или КТ3102х;
— R1 — 50К…1,2 М;
— R2 — 150…560 Ом;
— Антенна 80…100мм.

Прибор для обнаружения скрытой проводки

Питается
схема от 3
-5 В. Схема на двух батарейках от часов беспрерывно работает около 6
часов.
Антенной служит катушка, намотана проводом 
0.3 или 0.5 мм на каркасе 3 мм. Катушку можно использовать
как на
каркасе, в виде штанги, так и в бескаркасном виде.

В
зависимости от
толщины
провода, наматывается определённое количество витков при проволоке 0.3
мм — 25
вт., 0.5 мм — 50 вт.

Настройка
сводится к
подбору резистора R1*, им настраивается максимальная громкость главного
телефона, в зависимости от его сопротивления.

В
схеме вместо полевого
транзистора КП103 можно использовать КП303Д.

Прибор для обнаружения
обрыва в электропроводке.


Следующий
прибор можно легко поместить в маркер, антенну
вытянуть
через отверстие для стержня, длина антенны 5-10 См, если
нужна
чувствительность не более 5 — 10см, то для антенны достаточно
и длины
затвора
полевого транзистора.

Полевой
транзистор VT1 (рис.1) выполняет роль
датчика
«улавливающего» даже очень слабую напряженность электрического поля.
Поэтому когда рядом  с
фазовым проводом
осветительной сети окажется полевой транзистор искателя, сопротивление
его
участка сток-исток уменьшится настолько, что транзисторы VT2, VT3
откроются.
Вспыхнет светодиод HL1. Полевой транзистор может быть любой из серии
КП103, а
светодиод — из серии АЛ307. Биполярные транзисторы могут быть
любые маломощные кремниевые
или
германиевые указанной на схеме структуры и с возможно большим
коэффициентом
передачи тока. Резисторы — МЛТ-0,125. Транзистор VT2 (КТ203) можно
заменить на
КТ361. При монтаже полевого транзистора его располагают горизонтально
на плате,
а вывод затвора отгибают так, чтобы он находился над корпусом
транзистора. Если
при работе искателя выявится его излишняя чувствительность, вывод
затвора
укорачивают. 

Простой бесконтактный пробник.

Всего
два элемента —
микросхема DD1 и светодиод HL1 — составляют схему
этого пробника, микросхема
К176ЛП1
содержит три p и три n-канальных КМОП транзистора. Соединив выводы
микросхемы
таким образом, чтобы образовалась цепочка из трех инверторов, можно
получить
устройство, которое достаточно хорошо усиливает токи, наводимые полем
переменного напряжения в фазовом проводе электросети.

Между
выходом
последнего инвертора — вывод 12 DD1 и плюсом источника питания пробника
включен
светодиод. Он загорается, когда близко от вывода 6 микросхемы
расположить
фазный сетевой провод. 

Светодиод
погаснет, если, проводя
пробником вдоль
подключенного к электросети неисправного провода, дойти до места
разрыва.

Объединение
инверторов в цепочку нужно производить, соединяя между собой следующие
выводы
DD1:

1.       Вариант
соединения выводов микросхемы: 3, 8 и 13; 2 и 10; 4, 7 и 9;1 и 5; 11 и
14.

2.       Вариант
соединения выводов микросхемы: 3,8,10 и 13; 1, 5 и 12; 2,11 и 14; 4,7 и
9.

Чувствительность
пробника такова, что касаться изоляции проверяемых проводов им вовсе не
обязательно. Потребляемый ток не превышает 3 мА — при напряжении
элементов
питания 4 -5В.

Длина проводника
— «щупа» пробника, ведущего к выводу 6 микросхемы, должна
быть не более 15 — 20 мм. Выключатель в пробнике необязателен, так как
в
нерабочем режиме схема потребляет пренебрежительно малый ток,
обусловленный
лишь статическим током в КМОП — транзисторах инверторов микросхемы.

Схема
искателя
скрытой проводки  — индикатор переменного
электрического поля

 Искатель скрытой проводки

Простой
индикатор переменного электрического поля скрытой проводки может быть
собран с
использованием в качестве регулируемого внешним электрическим полем
делителя
напряжения — резистора R1 и канала полевого транзистора. В
качестве
управляемого генератора импульсов использован генератор на микросхеме
К122ТЛ1.
Нагрузкой генератора для индикации являются высокоомные головные
телефоны типа
ТОН-1 (ТОН-2)

  При
наличии внешнего переменного электрического поля сигнал, наводимый на
антенну,
поступает на управляющий электрод полевого транзистора (затвор), что
вызывает
модуляцию сопротивления канала полевого транзистора. В итоге, падение
напряжения на делителе изменяется, что, в свою очередь, вызывает
появление
генерации с изменяющейся частотой.

Индикатор скрытой
проводки на микросхемах

Схема
состоит из  усилителя напряжения переменного тока, основой
которого служит операционный усилитель DA1, и генератора
колебаний
звуковой
частоты, собранного на триггере Шмитта DD1.1 (К561ТЛ1),
частотозадающей цепи R7C2 и пьезоизлучателе BF1.
При расположении антенны WA1 вблизи от фазового провода электросети
наводка ЭДС
промышленной частоты 50 Гц усиливается микросхемой DA1, в результате
чего
зажигается светодиод HL1. Это же выходное напряжение операционного
усилителя,
пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.
Ток, потребляемый микросхемами прибора при питании их от источника
напряжением
9V, не превышает 2 мА, а при включении светодиода HL1 — 6…7 мА.

Антенной
WA1 служит
площадка фольги на плате размером примерно 55х12
мм.

Схема индикатора скрытой проводки

Монтажную
плату размещают
в корпусе из диэлектрического материала так, чтобы антенна оказалась в
головной
части и была максимально удалена от руки оператора. На лицевой стороне
корпуса
располагают выключатель питания SA1, светодиод HL1 и звукоизлучатель
BF1.

Начальную
чувствительность прибора устанавливают подстроечным
резистором R2.
Безошибочно смонтированный прибор в налаживании не нуждается.

Искатель скрытой проводки

Сигнал
с антенны
длиной 200 мм подается на операционный усилитель DA1 К140УД7. С выхода
6 DA1
усиленный сигнал подается на формирователь прямоугольных импульсов DD1
К561ЛА7
и затем на выходной каскад VT1, зажигая светодиод HL1. Желательно не
только
видеть, но и слышать этот сигнал. Подключать звуковой излучатель
параллельно
R5, HL1 нежелательно. Для  звука
применен
мультивибратор, на таймере КР1006ВИ1. Конденсаторами С1, С2 подбирается
приятное звучание и его длительность, а также свечение светодиода HL2.
В этом
варианте частота звучания составляет 1,7 кГц.

В
зависимости от
изоляции и глубины залегания проводов в стене, чувствительность можно
менять
касанием руки общего провода через конденсатор малой емкости СЗ 27…33
пФ, не
доводя прибор до самовозбуждения. При большей емкости прибор возбудится.

Питается
прибор от
3-х пальчиковых батареек, соединенных последовательно, с общим
напряжением 4,5
В. При пользовании прибором необходимо отключать мощные источники
электрического поля: трансформаторы, телевизоры, лампы дневного света.
В
качестве звукоизлучателя используются пьезоизлучатель от телефонных
аппаратов.

Светодиоды
HL1 —
зеленого, HL2 — красного свечения.

Прибор
для
обнаружения повреждений скрытой электропроводки

Прибор
питается от
автономного источника напряжением 9v и заключен в алюминиевый корпус
размером 80x38x27 мм.

Принцип работы:

На
один из проводов
скрытой электропроводки подается переменное напряжение 12V от
понижающего
трансформатора. Остальные провода заземляют. Приспособление включается
и
перемещается параллельно поверхности стены на расстоянии 5…40 мм. В
местах
обрыва или окончания провода индикатор гаснет.
Приспособление
может быть также использовано для обнаружения повреждений жил в гибких
переносных и шланговых кабелях.

Детектор
скрытой проводки

Устройство избавит вас от возможного риска попадания сверлом в
провод при
сверлении отверстия в стене, позволит проследить путь провода и во
многих
других случаях, когда необходимо обнаружить скрытые провода.
В качестве датчика используется отрезок провода или металлический
стержень
диаметром около 5 мм и длинной 70…90 мм.
Принцип работы схемы.

На биполярных
транзисторах VT1 и
VT3 собран низкочастотный мультивибратор. Его рабочая частота
определяется в
основном номиналами конденсаторов, в качестве которых используют
алюминиевые,
ниобиевые или танталовые электролитические конденсаторы.
В исходном состоянии, когда щуп антенны прибора удален на значительное
расстояние от скрытой проводки, полевой транзистор VT2 находиться в
режиме
отсечки. При этом на резисторе R4, который включен в цепь истока
транзистора
VT2 (КП103Д), падает напряжение примерно равное 3,5 вольт. При этом
фиксируется
потенциал базы VT3 на уровне, который удерживает VT3 в насыщенном
состоянии и светодиод
светится непрерывно. Транзистор VT1 в это время находиться в режиме
отсечки.

Когда щуп антенны приближается к месту скрытой прокладки провода, где
поддерживается переменный потенциал 220В, электрическая составляющая
электромагнитного поля сетевого провода наводит на входе антенны
переменный
потенциал, равный сотням милливольт-единицам вольт. В этом случае
соответствующие полупериоды входного сигнала открывают VT2, ток через
резистор
R4 увеличивается, а значит, увеличивается и падение напряжения на нем.
Потенциал базы VT3 относительно эмиттера VT3 становиться низким,
переводя VT3 в
режим отсечки.
В результате светодиод начинает мигать, сигнализируя о наличии в этом
месте
скрытой проводки.
РАДІОАМАТОР 11’2001

ИСКАТЕЛЬ
СКРЫТОЙ ПРОВОДКИ

При обнаружении сигнала частотой 50 Гц
 cветодиод будет мигает с частотой примерно 1,56 Гц,
с такой же частотой пре­рывается звуковой сигнал.
       

Рассмотрим схему (рис.1).

 Антенна
W1 -кусок монтажного провода длиной около 25
см, расположенный по периметру узкой боко­вой части корпуса прибора. На
транзисторах
VT1 и VT2
сделан простой усилитель — фор­мирователь
логических импульсов. Он уси­ливает наведенный в антенне сигнал и
по­дает его
на счетчик
D1 (вход «С»). Из
числа   выходов
многоразрядного счетчика К561ИЕ16
аналог 4020BEY
(
D1)
используется выход только с весовым коэффициентом «16». То есть,
изменение
состояния этого выхода происходит через каждые 16 входных импульсов,
значит,
деление частоты составляет 32. Таким образом, при приеме сигнала
частотой 50 Гц
здесь будет частота 1,5625 Гц. С этой частотой и будет мигать светодиод
HL1, подключенный к данному выходу счетчика
через промежуточный транзисторный ключ — усилитель тока (
VT3),
чтобы облегчить работу с прибором есть
звуковой сигнализатор, сделанный на микросхеме
D2.
Это  
схема   
мультивибратора,  
выдающего импульсы частотой около 2000 Гц.
На элементах
D2.1 и D2.2
сделан собственно мультивибратор, а
элементы
D2.3 и D2.4
образуют усилитель напряжения,
поднимающий разность потенциалов между выводами пьезоэлектрического
звукоизлучателя 
BF1
в два раза, по сравнению с номинальным
напряжением уровня логической единицы.

Мультивибратор    
управляемый, — чтобы он 
работал нужно подать 
напряжение
логической единицы на вывод 13
элемента
D2.1. Таким образом,   
включение  
звука происходит одновременно с включением индикаторного
светодиода.
Питается приборчик от 9-вольтовой батарейки 
типа   «Крона».
Выключатель
S1 
кнопка без фиксации. Когда вы ищите проводку нужно держать его нажатым,

отпустили,  и
выключился (так сделано с
целью экономии батареи). Звуокоизлучатель
BF1
— от прозвонки неисправного мультиметра.
На  печатной  плате 
он располагается  над
микросхемой
D2 (приклеен).

Счетчик К561ИЕ16 можно заменить практически
любым двоичным КМОП-счетчиком, у которого есть выход с весовым
коэффициентом
«16». Это может быть К561ИЕ20, К176ИЕ1, или два включенных
последовательно
счетчика микросхемы К561ИЕ10. Но в любом случае потребуется переделка
печатной
платы.

Печатная плата показана на рисунке 2.

На плате
размещены все
детали кроме антенны и источника питания. Никакого налаживания не
требуется.

ДВОИЧНЫЙ ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ

Схема
пробника
состоит из щупа-антенны, транзисторного усилителя-формирователя
импульсов и
счетчика с индикаторным светодиодом на выходе.

Антенна
улавливает электромагнитное поле, и на выходе усилительного каскада на
VT1 и
VT2 появляются импульсы, частота которых равна частоте входного
сигнала. Если
это сигнал электропроводки, то, понятно, частота импульсов будет равна
50 Гц.
Если радиосигнал, то и частота импульсов будет много выше.

 Далее, импульсы
поступают на счетчик, который делит их частоту на 32. А на
выходе
счетчика включен индикаторный светодиод.

Работает
пробник так:

Когда
на антенну поступает электромагнитное поле, излучаемое
электропроводкой, на выходе счетчика возникают импульсы частотой около
1,56 Гц, и индикаторный светодиод мигает равномерно с такой же
частотой. Если же, на антенну
поступает
радиосигнал, частота которого значительно выше 50 Гц, — светодиод
мигает
значительно быстрее и это зрительно воспринимается как его постоянное
свечение
с несколько пониженной яркостью. Либо, он вообще не горит, так как
микросхема
серии К561 может и не пропустить сигнал слишком высокой частоты.

Для
отстройки от
слабых, но сильно мешающих радиосигналов есть переменный резистор R1,
которым
можно регулировать чувствительность входа пробника.

Питается
прибор от «Кроны», малогабаритной батареи напряжением 9V.

Пробник
сделан в виде миниатюрного устройства, размещенного в
подходящем корпусе.

Антенной
служит отрезок обмоточного провода диаметром
около 1
мм длиной около 30 см, который виток к витку намотан на передней части
корпуса
и закреплен.

 Переменный
резистор
R1 сделан из подстроечного резистора, с самодельной рукояткой (из
пластмассового винта-барашка).

Налаживания
практически не требуется, только если подбор размеров антенны.

ИСКАТЕЛЬ ПРОВОДКИ

Особенность
этого
искателя проводки в том, что он не только показывает расположение
электропроводки, но и может оценить её глубину расположения, а
так
же,
позволит обнаружить радиожучок или другое передающее или излучающее
радиоволны
устройство. С его помощью можно определить и то, какая часть проводки
более
нагружена, а какая менее.

Принципиальная схема
показана на рисунке.

Антенна W1
представляет собой жестяную пластинку размерами примерно 60x60 мм.
Пластинка связана со входом через переменный резистор R1, которым можно регулировать
уровень
чувствительности прибора. На транзисторе VT1 выполнен каскад, повышающий
входное сопротивление прибора.
Переменное напряжение наводок с его выхода через конденсатор С1
поступает на
измеритель уровня переменного напряжения, выполненный на микросхеме DА1-AN6884  (KA2284),
включенной по типовой схеме.  

Уровень
величины
напряжения сетевых наводок индицируется на шкале из пяти светодиодов HL1-HL5AЛ307.

Прибор
собран в
корпусе неисправного пульта дистанционного управления видеоплейером «Orion-688».
Батарея питания
состоит из трех элементов «АА» общим напряжением 4,5V. Два элемента размещены в
батарейном
отсеке пульта, и еще один непосредственно в корпусе пульта. Рядом с
этим
элементом расположена микросхема DА1 со светодиодами. Антенная
пластина
расположена в передней части корпуса и изогнута по форме.

СТРОИТЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ

Поможет
обнаружить электропроводку, замурованные в стену трубы и даже гвоздик
под
обоями. Глубина действия его не велика, гвоздик он найдет, если слой
обоев или
штукатурки над ним не более 5 мм, водопроводную трубу на глубине до
200мм, а
электропроводку на глубине до 20-30 мм.

Металлоискатель
состоит из генератора высокой частоты на транзисторе VT1, работающего на частоте около
100
кГц, детектора этого ВЧ напряжения на транзисторе VT2 и схемы индикации на
транзисторах VT3-VT4 и светодиоде HL1.

Катушки
генератора ВЧ
намотаны на ферритовом стержне (как для магнитной антенны
АМ-приемника). Режим
работы генератора устанавливают на краю срыва, но так, чтобы при
наличии всех
металлических предметов, которые входят в состав металлоискателя, он
работал.
При этом, транзистор VT2
под действием ВЧ напряжения, поступающего на его базу, открыт и
напряжение на
его коллекторе мало на столько, что транзисторы VT3 и VT4 закрыты и светодиод HL1 не горит.

При
приближении к магнитной
антенне металлического предмета начинается понижение амплитуды
генерации
ВЧ-генератора с его дальнейшим срывом. ВЧ напряжение на базе VT2 снижается или
перестает поступать и
транзистор VT2
закрывается. Постоянное напряжение на его коллекторе возрастает (через
резистор
R4) и
достигает такого
уровня, при котором происходит открывание транзисторов VT3 и VT4 и загорается
светодиод HL1.

Таким
образом,   перемещения
прибора относительно
металлического предмета будут индицироваться миганиями этого
светодиода, и
более того, малые перемещения будут так же влиять и на яркость свечения
светодиода. Но, это, разумеется, будет возможно только при точной
настройке
прибора, которую нужно время от времени повторять (для этого есть два  подстроенных 
резистора регуляторы, которых выведены
на верхнюю
панель пластмассового корпуса).

Катушки
L1 и L2 намотаны на
ферритовом стержне
диаметром 8 мм и длиной около 100 мм. Они расположены рядом. L1 содержит 120
витков, a L2 — 45 витков. Провод типа
ПЭВТЛ 0,35.

Питается
металлоискатель от импортного аналога батареи «Крона».

Налаживание.

Расположив
прибор вдали от металлических предметов (снимите часы с
руки)
подстраивают резисторы R3
и R5
(методом
последовательного приближения) так, чтобы прибор был на грани срыва
генерации
(светодиод светит на пониженной яркостью и неравномерно). Затем,
оставив в
покое R5
продолжают
подстройку R3,
так
чтобы светодиод погас. Далее, испытывают прибор на пятикопеечную
моменту,
добиваясь подстройкой R3
и R5
наибольшей
чувствительности.

ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ БЕЗ ИСТОЧНИКА
ПИТАНИЯ.

От множества аналогичных отличается тем, что не требует ни
собственного
источника питания, ни каких либо других приспособлений и измерительных
приборов.

Схема
прибора
показана на рис. 1.

В
качестве источника
энергии выступает та самая сеть переменного тока, которую мы и
опасаемся
повредить гвоздём, электродрелью или перфоратором. Когда на устройство
подано
напряжение питания сети переменного тока 220 В, накопительный
конденсатор
большой ёмкости быстро заряжается до напряжения открывания стабилитрона
VD1.  После зарядки
конденсатора С1 устройство можно
вынуть из розетки. Поиск места закладки проводки ведётся обычным
способом.
Когда антенна WA1 находится вблизи места пролегания электропроводки,
полевой
транзистор VT2 открывается с частотой сети переменного тока, светодиод
HL1
начинает светиться. Чем ближе расположена электропроводка, тем ярче он
светит.
Транзистор VT1 работает как микромощный стабилитрон с напряжением
стабилизации
6…10В. Дополнительно он выполняет функцию высокоомного разрядного
резистора
для перехода затвор-исток транзистора VT2. Кнопка SB1 без фиксации
положения
предназначена для проверки наличия достаточного заряда на обкладках
конденсатора С1. С понижением напряжения на конденсаторе С1
чувствительность
прибора не изменяется, но снижается яркость свечения светодиода. Сенсор
Е1
предназначен для того, чтобы при необходимости можно было увеличить
чувствительность прибора, для чего нужно прикоснуться к нему пальцем.
Резисторы
R3, R4 ограничивают импульсный ток, протекающий через диоды
выпрямительного
моста в момент включения устройства в сеть.  Детали: Вместо транзистора КП504А можно
применить любой из серий
КП501, КП502, КП504, КР1064КТ1, КР1014КТ1, ZVN2120, BSS88, BSS124.

Цоколёвка
некоторых транзисторов приводится на рисунке.

Светодиод
HL1 должен
быть суперярким, например, «красные» L-1503SRC/F, L-1503SRC/E,
L-1513SRC/F.
Неплохие результаты были получены и с современными суперяркими
светодиодами
голубого и белого цвета свечения. Стабилитрон VD1 любой маломощный на
напряжение стабилизации 18…20 В, например, 1N4747A, КС218Ж, КС520В.
При   отсутствии

таких
стабилитронов
можно установить два, включенных последовательно Д814Б1 или 1N4739A.
Вместо
диодного моста VD2 можно применить любой малогабаритный из серий КЦ422,
КЦ407,
DB101… DB107, RB151… RB157. Конденсатор С2 плё­ночный типов К73-17,
К73-24,
К73-39 на рабо­чее напряжение 630 В и ёмкостью 0,1…0,25 мкФ Оксидный
конденсатор С1 — самая крупная деталь устройства, автор использовал
относительно малогабаритный фирмы «Philips». Этот конденсатор должен
иметь как
можно меньший ток утечки. Конденсаторы с большим рабочим напряжением
обычно имеют
меньший ток утечки среди конденсаторов одной ёмкости и фирмы. Сенсор
можно
изготовить из металлического корпуса неисправного транзистора,
например, КТ203,
МП16… МП42.

Если
прибор будет работать
неустойчиво, то
следует к выводам затвора и истока VT2 подключить высокоомный резистор
сопротивлением 100… 200 МОм. При желании устройство можно
модернизировать.
Например, следующим образом. Если последовательно со стабилитроном VD1
установить светодиод, (анодами вместе), то этот светодиод будет
сигнализировать
о полной зарядке конденсатора С1. Если последовательно со светодиодом
HL1,
соблюдая полярность, установить пьезокерамический излучатель звука со
встроенным генератором, например, НРА17АХ, то совместно со свечением
светодиода
HL1 звукоизлучатель будет генерировать прерывистый тон — прибор станет
информативнее. При настройке устройства не забывайте отключать его от
сети.

Следующая схема
содержит электростатический тип
обнаружения проводки.

Схема:

На антенну
наводится напряжение от проводки. Оно детектируется
диодом
на U1A и C5. На U1D собран генератор, управляемый напряжением, U1C и Q3
– это усилитель для
пьезопищалки. 

Работаем
так –
прислоняем к стене, где точно нет проводки, регулируем чувствительность
так, чтобы
детектор слегка кряхтел. Двигаем и там, где тон становится выше, там и
есть
наша проводка.

*Функциональные аналоги: K544УД14, КМ1401УД4, 1435УД4, LF347, TLO84

Источник: http://bsvi.ru/


 
Тестеры
напряжения «карандашного»
типа: S
Line GK2, MEET MS-48NS, YADITE 8848

Технические
характеристики

Параметр

Значение

Измеряемые
параметры

·         напряжение
постоянное

·         напряжение
переменное

·         прозвон
цепи

Определение
переменного напряжения

Контактным
методом

70
… 250 В

Бесконтактным

70
… 1000 В

Тест
постоянного
напряжения

до
250 В

Тест
полярности

1.2
… 36 В

Испытание
презвонкой

«O»
= 0.5 МОм;
«L» = 0…50 МОм;
«H» = 0…100 МОм

Тест
батарей

есть

·         Частота
переменного тока 50 … 500 Гц

·         Питание:
две батареи SR 1.5 В (типоразмер «AAA»)

Условные
обозначения

«0»
— контактный тест сети
переменного тока.

«L» — бесконтактный тест, низкая чувствительность.

«H» — бесконтактный тест, высокая чувствительность.

НАЗНАЧЕНИЕ: контактное и бесконтактное
обнаружение переменного напряжения; определение фазы переменного
напряжения;
определение полярности постоянного напряжения; позвонка непрерывности
цепи;
проверка диодов, транзисторов и конденсаторов.

Устройство:

Схема прибора YADITE 8848:


Сигнализатор
скрытой проводки Е121 (ДЯТЕЛ)

 Назначение:

   проверка
правильности фазировки (подключения)
бытовых элект­росчетчиков без снятия пломбы и защитной крышки;

   обнаружение
скрытой проводки;

   обнаружение
фазного провода на изолированных
и неизолированных токоведущих частях электрических сетей переменного
тока без
непосредственной связи с этими частями;

   проверка
исправности предохранителей,  плавких
вставок, обрывов в
проводах находящихся
под напряжением;

   индикация
с поверхности земли наличия
напряжения на ВЛ 10 кВ и выше;

   индикация
с поверхности земли наличия
напряжения контактной сети троллей­бусов и трамваев;

   обнаружение
электромагнитных полей ПК,
телевизоров и др. бытовой техники;

   обнаружение
утечек  СВЧ-печей.

Основная область
применения
— при обслуживании электросчетчиков,
электро­установок и электрических
сетей. Принцип действия сигнализатора основан на
ис­пользовании
электростатической индукции в переменном электрическом поле,
возни­кающем
вокруг токоведущего проводника.

Сигнализатор обеспечивает проверку наличия
напряжения в цепях переменного тока номинальным напряжением 380 В
промышленной
частоты без электрического контак­та с проводником

Сигнализатор имеет
четыре
диапазона чувствительности к элект­рическому полю, создаваемому
проводником

«1» — 0…10 ±5 мм, «2» — 0…100 ±50 мм, «3» —
0…300 ±150 мм, «4» —
0…700
±350 мм.

Сигнализатор имеет режим самоконтро­ля. Габаритные
размеры —
210
x80x45 мм.   
Масса прибора — 250 г.

Схема
прибора аналогичного промышленному Е121
.

вариант самостоятельного изготовления.

 

Детали:

ВЧ кабель сплошной экран и кнопки без фиксации (тип  304,
8*8mm push ON).

Полевой транзистор N-JFET типа, BF-245 затвор транзистора G подпаян к
навесному монтажу,
на фото видно показанно как это сделать.

Потом, эту часть навесного монтажа полевого транзистора, экранируем, на
общий провод.
Внимание, экран ВЧ
кабеля на общий провод не припаивается, соблюдайте точность подключения
по схеме!

Общий вид печатной платы.


Настройка схемы сводится только к подбору порога чувствительности
подстроечным резистором 47 ком.

 

Файл печатной платы в архиве
Plata_«D».


Схема встраивается в подходящий корпус, например от пульта ДУ
телевизора.

Источник: http://radiomaster.com.ua/


Логический пробник
для статических и динамических режимов

При
подаче на вход
пробника импульсов с частотой до 25 Гц чередование цифр «О» и
«1» на индикаторе можно различить, при частотах свыше 25 Гц начинает
сказываться влияние конденсатора С1. В результате яркость свечения
сегмента d
резко уменьшается и индицируется буква «П», что означает присутствие на
входе
пробника импульсов с относительно высокой частотой.

При
отсутствии сигнала
на входе элемента D1.1 низкий логический уровень, на входах D1.2 — D1.4

высокий. Сегменты индикатора не светятся.

Если на вход пробника поступает уровень, соответствующий логической
«1», на выходе элемента D1.1 будет логический «0», на
выходе D1.2 — логическая «1», элементы D1.3 и D1.4 остаются в
первоначальном состоянии.

При
этом светятся
сегменты b и с
и индицируется цифра «1».

Когда
на входе
пробника будет логический «0», на выходе элементов D1.2-D1.4 появится
высокий логический уровень и будут светиться сегменты а, b, с, d, e и
f, т е
будет индицироваться «О».

Простой
индикатор переменного электрического поля скрытой проводки может быть
собран с
использованием в качестве регулируемого внешним электрическим полем
делителя
напряжения — резистора R1 и канала полевого транзистора. В
качестве
управляемого генератора импульсов использован генератор на микросхеме
К122ТЛ1.
Нагрузкой генератора для индикации являются высокоомные головные
телефоны типа
ТОН-1 (ТОН-2)

  При
наличии внешнего переменного электрического поля сигнал, наводимый на
антенну,
поступает на управляющий электрод полевого транзистора (затвор), что
вызывает
модуляцию сопротивления канала полевого транзистора. В итоге, падение
напряжения на делителе изменяется, что, в свою очередь, вызывает
появление
генерации с изменяющейся частотой.

Индикатор скрытой
проводки на микросхемах

Схема
состоит из  усилителя напряжения переменного тока, основой
которого служит операционный усилитель DA1, и генератора
колебаний
звуковой
частоты, собранного на триггере Шмитта DD1.1 (К561ТЛ1),
частотозадающей цепи R7C2 и пьезоизлучателе BF1.
При расположении антенны WA1 вблизи от фазового провода электросети
наводка ЭДС
промышленной частоты 50 Гц усиливается микросхемой DA1, в результате
чего
зажигается светодиод HL1. Это же выходное напряжение операционного
усилителя,
пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.
Ток, потребляемый микросхемами прибора при питании их от источника
напряжением
9V, не превышает 2 мА, а при включении светодиода HL1 — 6…7 мА.

Антенной
WA1 служит
площадка фольги на плате размером примерно 55х12
мм.

Схема индикатора скрытой проводки

Монтажную
плату размещают
в корпусе из диэлектрического материала так, чтобы антенна оказалась в
головной
части и была максимально удалена от руки оператора. На лицевой стороне
корпуса
располагают выключатель питания SA1, светодиод HL1 и звукоизлучатель
BF1.

Начальную
чувствительность прибора устанавливают подстроечным
резистором R2.
Безошибочно смонтированный прибор в налаживании не нуждается.

Искатель скрытой проводки

Сигнал
с антенны
длиной 200 мм подается на операционный усилитель DA1 К140УД7. С выхода
6 DA1
усиленный сигнал подается на формирователь прямоугольных импульсов DD1
К561ЛА7
и затем на выходной каскад VT1, зажигая светодиод HL1. Желательно не
только
видеть, но и слышать этот сигнал. Подключать звуковой излучатель
параллельно
R5, HL1 нежелательно. Для  звука
применен
мультивибратор, на таймере КР1006ВИ1. Конденсаторами С1, С2 подбирается
приятное звучание и его длительность, а также свечение светодиода HL2.
В этом
варианте частота звучания составляет 1,7 кГц.

В
зависимости от
изоляции и глубины залегания проводов в стене, чувствительность можно
менять
касанием руки общего провода через конденсатор малой емкости СЗ 27…33
пФ, не
доводя прибор до самовозбуждения. При большей емкости прибор возбудится.

Питается
прибор от
3-х пальчиковых батареек, соединенных последовательно, с общим
напряжением 4,5
В. При пользовании прибором необходимо отключать мощные источники
электрического поля: трансформаторы, телевизоры, лампы дневного света.
В
качестве звукоизлучателя используются пьезоизлучатель от телефонных
аппаратов.

Светодиоды
HL1 —
зеленого, HL2 — красного свечения.

Прибор
для
обнаружения повреждений скрытой электропроводки

Прибор
питается от
автономного источника напряжением 9v и заключен в алюминиевый корпус
размером 80x38x27 мм.

Принцип работы:

На
один из проводов
скрытой электропроводки подается переменное напряжение 12V от
понижающего
трансформатора. Остальные провода заземляют. Приспособление включается
и
перемещается параллельно поверхности стены на расстоянии 5…40 мм. В
местах
обрыва или окончания провода индикатор гаснет.
Приспособление
может быть также использовано для обнаружения повреждений жил в гибких
переносных и шланговых кабелях.

Детектор
скрытой проводки

Устройство избавит вас от возможного риска попадания сверлом в
провод при
сверлении отверстия в стене, позволит проследить путь провода и во
многих
других случаях, когда необходимо обнаружить скрытые провода.
В качестве датчика используется отрезок провода или металлический
стержень
диаметром около 5 мм и длинной 70…90 мм.
Принцип работы схемы.

На биполярных
транзисторах VT1 и
VT3 собран низкочастотный мультивибратор. Его рабочая частота
определяется в
основном номиналами конденсаторов, в качестве которых используют
алюминиевые,
ниобиевые или танталовые электролитические конденсаторы.
В исходном состоянии, когда щуп антенны прибора удален на значительное
расстояние от скрытой проводки, полевой транзистор VT2 находиться в
режиме
отсечки. При этом на резисторе R4, который включен в цепь истока
транзистора
VT2 (КП103Д), падает напряжение примерно равное 3,5 вольт. При этом
фиксируется
потенциал базы VT3 на уровне, который удерживает VT3 в насыщенном
состоянии и светодиод
светится непрерывно. Транзистор VT1 в это время находиться в режиме
отсечки.

Когда щуп антенны приближается к месту скрытой прокладки провода, где
поддерживается переменный потенциал 220В, электрическая составляющая
электромагнитного поля сетевого провода наводит на входе антенны
переменный
потенциал, равный сотням милливольт-единицам вольт. В этом случае
соответствующие полупериоды входного сигнала открывают VT2, ток через
резистор
R4 увеличивается, а значит, увеличивается и падение напряжения на нем.
Потенциал базы VT3 относительно эмиттера VT3 становиться низким,
переводя VT3 в
режим отсечки.
В результате светодиод начинает мигать, сигнализируя о наличии в этом
месте
скрытой проводки.
РАДІОАМАТОР 11’2001

ИСКАТЕЛЬ
СКРЫТОЙ ПРОВОДКИ

При обнаружении сигнала частотой 50 Гц
 cветодиод будет мигает с частотой примерно 1,56 Гц,
с такой же частотой пре­рывается звуковой сигнал.
       

Рассмотрим схему (рис.1).

 Антенна
W1 -кусок монтажного провода длиной около 25
см, расположенный по периметру узкой боко­вой части корпуса прибора. На
транзисторах
VT1 и VT2
сделан простой усилитель — фор­мирователь
логических импульсов. Он уси­ливает наведенный в антенне сигнал и
по­дает его
на счетчик
D1 (вход «С»). Из
числа   выходов
многоразрядного счетчика К561ИЕ16
аналог 4020BEY
(
D1)
используется выход только с весовым коэффициентом «16». То есть,
изменение
состояния этого выхода происходит через каждые 16 входных импульсов,
значит,
деление частоты составляет 32. Таким образом, при приеме сигнала
частотой 50 Гц
здесь будет частота 1,5625 Гц. С этой частотой и будет мигать светодиод
HL1, подключенный к данному выходу счетчика
через промежуточный транзисторный ключ — усилитель тока (
VT3),
чтобы облегчить работу с прибором есть
звуковой сигнализатор, сделанный на микросхеме
D2.
Это  
схема   
мультивибратора,  
выдающего импульсы частотой около 2000 Гц.
На элементах
D2.1 и D2.2
сделан собственно мультивибратор, а
элементы
D2.3 и D2.4
образуют усилитель напряжения,
поднимающий разность потенциалов между выводами пьезоэлектрического
звукоизлучателя 
BF1
в два раза, по сравнению с номинальным
напряжением уровня логической единицы.

Мультивибратор    
управляемый, — чтобы он 
работал нужно подать 
напряжение
логической единицы на вывод 13
элемента
D2.1. Таким образом,   
включение  
звука происходит одновременно с включением индикаторного
светодиода.
Питается приборчик от 9-вольтовой батарейки 
типа   «Крона».
Выключатель
S1 
кнопка без фиксации. Когда вы ищите проводку нужно держать его нажатым,

отпустили,  и
выключился (так сделано с
целью экономии батареи). Звуокоизлучатель
BF1
— от прозвонки неисправного мультиметра.
На  печатной  плате 
он располагается  над
микросхемой
D2 (приклеен).

Счетчик К561ИЕ16 можно заменить практически
любым двоичным КМОП-счетчиком, у которого есть выход с весовым
коэффициентом
«16». Это может быть К561ИЕ20, К176ИЕ1, или два включенных
последовательно
счетчика микросхемы К561ИЕ10. Но в любом случае потребуется переделка
печатной
платы.

Печатная плата показана на рисунке 2.

На плате
размещены все
детали кроме антенны и источника питания. Никакого налаживания не
требуется.

ДВОИЧНЫЙ ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ

Схема
пробника
состоит из щупа-антенны, транзисторного усилителя-формирователя
импульсов и
счетчика с индикаторным светодиодом на выходе.

Антенна
улавливает электромагнитное поле, и на выходе усилительного каскада на
VT1 и
VT2 появляются импульсы, частота которых равна частоте входного
сигнала. Если
это сигнал электропроводки, то, понятно, частота импульсов будет равна
50 Гц.
Если радиосигнал, то и частота импульсов будет много выше.

 Далее, импульсы
поступают на счетчик, который делит их частоту на 32. А на
выходе
счетчика включен индикаторный светодиод.

Работает
пробник так:

Когда
на антенну поступает электромагнитное поле, излучаемое
электропроводкой, на выходе счетчика возникают импульсы частотой около
1,56 Гц, и индикаторный светодиод мигает равномерно с такой же
частотой. Если же, на антенну
поступает
радиосигнал, частота которого значительно выше 50 Гц, — светодиод
мигает
значительно быстрее и это зрительно воспринимается как его постоянное
свечение
с несколько пониженной яркостью. Либо, он вообще не горит, так как
микросхема
серии К561 может и не пропустить сигнал слишком высокой частоты.

Для
отстройки от
слабых, но сильно мешающих радиосигналов есть переменный резистор R1,
которым
можно регулировать чувствительность входа пробника.

Питается
прибор от «Кроны», малогабаритной батареи напряжением 9V.

Пробник
сделан в виде миниатюрного устройства, размещенного в
подходящем корпусе.

Антенной
служит отрезок обмоточного провода диаметром
около 1
мм длиной около 30 см, который виток к витку намотан на передней части
корпуса
и закреплен.

 Переменный
резистор
R1 сделан из подстроечного резистора, с самодельной рукояткой (из
пластмассового винта-барашка).

Налаживания
практически не требуется, только если подбор размеров антенны.

ИСКАТЕЛЬ ПРОВОДКИ

Особенность
этого
искателя проводки в том, что он не только показывает расположение
электропроводки, но и может оценить её глубину расположения, а
так
же,
позволит обнаружить радиожучок или другое передающее или излучающее
радиоволны
устройство. С его помощью можно определить и то, какая часть проводки
более
нагружена, а какая менее.

Принципиальная схема
показана на рисунке.

Антенна W1
представляет собой жестяную пластинку размерами примерно 60x60 мм.
Пластинка связана со входом через переменный резистор R1, которым можно регулировать
уровень
чувствительности прибора. На транзисторе VT1 выполнен каскад, повышающий
входное сопротивление прибора.
Переменное напряжение наводок с его выхода через конденсатор С1
поступает на
измеритель уровня переменного напряжения, выполненный на микросхеме DА1-AN6884  (KA2284),
включенной по типовой схеме.  

Уровень
величины
напряжения сетевых наводок индицируется на шкале из пяти светодиодов HL1-HL5AЛ307.

Прибор
собран в
корпусе неисправного пульта дистанционного управления видеоплейером «Orion-688».
Батарея питания
состоит из трех элементов «АА» общим напряжением 4,5V. Два элемента размещены в
батарейном
отсеке пульта, и еще один непосредственно в корпусе пульта. Рядом с
этим
элементом расположена микросхема DА1 со светодиодами. Антенная
пластина
расположена в передней части корпуса и изогнута по форме.

СТРОИТЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ

Поможет
обнаружить электропроводку, замурованные в стену трубы и даже гвоздик
под
обоями. Глубина действия его не велика, гвоздик он найдет, если слой
обоев или
штукатурки над ним не более 5 мм, водопроводную трубу на глубине до
200мм, а
электропроводку на глубине до 20-30 мм.

Металлоискатель
состоит из генератора высокой частоты на транзисторе VT1, работающего на частоте около
100
кГц, детектора этого ВЧ напряжения на транзисторе VT2 и схемы индикации на
транзисторах VT3-VT4 и светодиоде HL1.

Катушки
генератора ВЧ
намотаны на ферритовом стержне (как для магнитной антенны
АМ-приемника). Режим
работы генератора устанавливают на краю срыва, но так, чтобы при
наличии всех
металлических предметов, которые входят в состав металлоискателя, он
работал.
При этом, транзистор VT2
под действием ВЧ напряжения, поступающего на его базу, открыт и
напряжение на
его коллекторе мало на столько, что транзисторы VT3 и VT4 закрыты и светодиод HL1 не горит.

При
приближении к магнитной
антенне металлического предмета начинается понижение амплитуды
генерации
ВЧ-генератора с его дальнейшим срывом. ВЧ напряжение на базе VT2 снижается или
перестает поступать и
транзистор VT2
закрывается. Постоянное напряжение на его коллекторе возрастает (через
резистор
R4) и
достигает такого
уровня, при котором происходит открывание транзисторов VT3 и VT4 и загорается
светодиод HL1.

Таким
образом,   перемещения
прибора относительно
металлического предмета будут индицироваться миганиями этого
светодиода, и
более того, малые перемещения будут так же влиять и на яркость свечения
светодиода. Но, это, разумеется, будет возможно только при точной
настройке
прибора, которую нужно время от времени повторять (для этого есть два  подстроенных 
резистора регуляторы, которых выведены
на верхнюю
панель пластмассового корпуса).

Катушки
L1 и L2 намотаны на
ферритовом стержне
диаметром 8 мм и длиной около 100 мм. Они расположены рядом. L1 содержит 120
витков, a L2 — 45 витков. Провод типа
ПЭВТЛ 0,35.

Питается
металлоискатель от импортного аналога батареи «Крона».

Налаживание.

Расположив
прибор вдали от металлических предметов (снимите часы с
руки)
подстраивают резисторы R3
и R5
(методом
последовательного приближения) так, чтобы прибор был на грани срыва
генерации
(светодиод светит на пониженной яркостью и неравномерно). Затем,
оставив в
покое R5
продолжают
подстройку R3,
так
чтобы светодиод погас. Далее, испытывают прибор на пятикопеечную
моменту,
добиваясь подстройкой R3
и R5
наибольшей
чувствительности.

ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ БЕЗ ИСТОЧНИКА
ПИТАНИЯ.

От множества аналогичных отличается тем, что не требует ни
собственного
источника питания, ни каких либо других приспособлений и измерительных
приборов.

Схема
прибора
показана на рис. 1.

В
качестве источника
энергии выступает та самая сеть переменного тока, которую мы и
опасаемся
повредить гвоздём, электродрелью или перфоратором. Когда на устройство
подано
напряжение питания сети переменного тока 220 В, накопительный
конденсатор
большой ёмкости быстро заряжается до напряжения открывания стабилитрона
VD1.  После зарядки
конденсатора С1 устройство можно
вынуть из розетки. Поиск места закладки проводки ведётся обычным
способом.
Когда антенна WA1 находится вблизи места пролегания электропроводки,
полевой
транзистор VT2 открывается с частотой сети переменного тока, светодиод
HL1
начинает светиться. Чем ближе расположена электропроводка, тем ярче он
светит.
Транзистор VT1 работает как микромощный стабилитрон с напряжением
стабилизации
6…10В. Дополнительно он выполняет функцию высокоомного разрядного
резистора
для перехода затвор-исток транзистора VT2. Кнопка SB1 без фиксации
положения
предназначена для проверки наличия достаточного заряда на обкладках
конденсатора С1. С понижением напряжения на конденсаторе С1
чувствительность
прибора не изменяется, но снижается яркость свечения светодиода. Сенсор
Е1
предназначен для того, чтобы при необходимости можно было увеличить
чувствительность прибора, для чего нужно прикоснуться к нему пальцем.
Резисторы
R3, R4 ограничивают импульсный ток, протекающий через диоды
выпрямительного
моста в момент включения устройства в сеть.  Детали: Вместо транзистора КП504А можно
применить любой из серий
КП501, КП502, КП504, КР1064КТ1, КР1014КТ1, ZVN2120, BSS88, BSS124.

Цоколёвка
некоторых транзисторов приводится на рисунке.

Светодиод
HL1 должен
быть суперярким, например, «красные» L-1503SRC/F, L-1503SRC/E,
L-1513SRC/F.
Неплохие результаты были получены и с современными суперяркими
светодиодами
голубого и белого цвета свечения. Стабилитрон VD1 любой маломощный на
напряжение стабилизации 18…20 В, например, 1N4747A, КС218Ж, КС520В.
При   отсутствии

таких
стабилитронов
можно установить два, включенных последовательно Д814Б1 или 1N4739A.
Вместо
диодного моста VD2 можно применить любой малогабаритный из серий КЦ422,
КЦ407,
DB101… DB107, RB151… RB157. Конденсатор С2 плё­ночный типов К73-17,
К73-24,
К73-39 на рабо­чее напряжение 630 В и ёмкостью 0,1…0,25 мкФ Оксидный
конденсатор С1 — самая крупная деталь устройства, автор использовал
относительно малогабаритный фирмы «Philips». Этот конденсатор должен
иметь как
можно меньший ток утечки. Конденсаторы с большим рабочим напряжением
обычно имеют
меньший ток утечки среди конденсаторов одной ёмкости и фирмы. Сенсор
можно
изготовить из металлического корпуса неисправного транзистора,
например, КТ203,
МП16… МП42.

Если
прибор будет работать
неустойчиво, то
следует к выводам затвора и истока VT2 подключить высокоомный резистор
сопротивлением 100… 200 МОм. При желании устройство можно
модернизировать.
Например, следующим образом. Если последовательно со стабилитроном VD1
установить светодиод, (анодами вместе), то этот светодиод будет
сигнализировать
о полной зарядке конденсатора С1. Если последовательно со светодиодом
HL1,
соблюдая полярность, установить пьезокерамический излучатель звука со
встроенным генератором, например, НРА17АХ, то совместно со свечением
светодиода
HL1 звукоизлучатель будет генерировать прерывистый тон — прибор станет
информативнее. При настройке устройства не забывайте отключать его от
сети.

Следующая схема
содержит электростатический тип
обнаружения проводки.

Схема:

На антенну
наводится напряжение от проводки. Оно детектируется
диодом
на U1A и C5. На U1D собран генератор, управляемый напряжением, U1C и Q3
– это усилитель для
пьезопищалки. 

Работаем
так –
прислоняем к стене, где точно нет проводки, регулируем чувствительность
так, чтобы
детектор слегка кряхтел. Двигаем и там, где тон становится выше, там и
есть
наша проводка.

*Функциональные аналоги: K544УД14, КМ1401УД4, 1435УД4, LF347, TLO84

Источник: http://bsvi.ru/


 
Тестеры
напряжения «карандашного»
типа: S
Line GK2, MEET MS-48NS, YADITE 8848

Технические
характеристики

Параметр

Значение

Измеряемые
параметры

·         напряжение
постоянное

·         напряжение
переменное

·         прозвон
цепи

Определение
переменного напряжения

Контактным
методом

70
… 250 В

Бесконтактным

70
… 1000 В

Тест
постоянного
напряжения

до
250 В

Тест
полярности

1.2
… 36 В

Испытание
презвонкой

«O»
= 0.5 МОм;
«L» = 0…50 МОм;
«H» = 0…100 МОм

Тест
батарей

есть

·         Частота
переменного тока 50 … 500 Гц

·         Питание:
две батареи SR 1.5 В (типоразмер «AAA»)

Условные
обозначения

«0»
— контактный тест сети
переменного тока.

«L» — бесконтактный тест, низкая чувствительность.

«H» — бесконтактный тест, высокая чувствительность.

НАЗНАЧЕНИЕ: контактное и бесконтактное
обнаружение переменного напряжения; определение фазы переменного
напряжения;
определение полярности постоянного напряжения; позвонка непрерывности
цепи;
проверка диодов, транзисторов и конденсаторов.

Устройство:

Схема прибора YADITE 8848:


Сигнализатор
скрытой проводки Е121 (ДЯТЕЛ)

 Назначение:

   проверка
правильности фазировки (подключения)
бытовых элект­росчетчиков без снятия пломбы и защитной крышки;

   обнаружение
скрытой проводки;

   обнаружение
фазного провода на изолированных
и неизолированных токоведущих частях электрических сетей переменного
тока без
непосредственной связи с этими частями;

   проверка
исправности предохранителей,  плавких
вставок, обрывов в
проводах находящихся
под напряжением;

   индикация
с поверхности земли наличия
напряжения на ВЛ 10 кВ и выше;

   индикация
с поверхности земли наличия
напряжения контактной сети троллей­бусов и трамваев;

   обнаружение
электромагнитных полей ПК,
телевизоров и др. бытовой техники;

   обнаружение
утечек  СВЧ-печей.

Основная область
применения
— при обслуживании электросчетчиков,
электро­установок и электрических
сетей. Принцип действия сигнализатора основан на
ис­пользовании
электростатической индукции в переменном электрическом поле,
возни­кающем
вокруг токоведущего проводника.

Сигнализатор обеспечивает проверку наличия
напряжения в цепях переменного тока номинальным напряжением 380 В
промышленной
частоты без электрического контак­та с проводником

Сигнализатор имеет
четыре
диапазона чувствительности к элект­рическому полю, создаваемому
проводником

«1» — 0…10 ±5 мм, «2» — 0…100 ±50 мм, «3» —
0…300 ±150 мм, «4» —
0…700
±350 мм.

Сигнализатор имеет режим самоконтро­ля. Габаритные
размеры —
210
x80x45 мм.   
Масса прибора — 250 г.

Схема
прибора аналогичного промышленному Е121
.

вариант самостоятельного изготовления.

 

Детали:

ВЧ кабель сплошной экран и кнопки без фиксации (тип  304,
8*8mm push ON).

Полевой транзистор N-JFET типа, BF-245 затвор транзистора G подпаян к
навесному монтажу,
на фото видно показанно как это сделать.

Потом, эту часть навесного монтажа полевого транзистора, экранируем, на
общий провод.
Внимание, экран ВЧ
кабеля на общий провод не припаивается, соблюдайте точность подключения
по схеме!

Общий вид печатной платы.


Настройка схемы сводится только к подбору порога чувствительности
подстроечным резистором 47 ком.

 

Файл печатной платы в архиве
Plata_«D».


Схема встраивается в подходящий корпус, например от пульта ДУ
телевизора.

Источник: http://radiomaster.com.ua/


Логический пробник
для статических и динамических режимов

При
подаче на вход
пробника импульсов с частотой до 25 Гц чередование цифр «О» и
«1» на индикаторе можно различить, при частотах свыше 25 Гц начинает
сказываться влияние конденсатора С1. В результате яркость свечения
сегмента d
резко уменьшается и индицируется буква «П», что означает присутствие на
входе
пробника импульсов с относительно высокой частотой.

При
отсутствии сигнала
на входе элемента D1.1 низкий логический уровень, на входах D1.2 — D1.4

высокий. Сегменты индикатора не светятся.

Если на вход пробника поступает уровень, соответствующий логической
«1», на выходе элемента D1.1 будет логический «0», на
выходе D1.2 — логическая «1», элементы D1.3 и D1.4 остаются в
первоначальном состоянии.

При
этом светятся
сегменты b и с
и индицируется цифра «1».

Когда
на входе
пробника будет логический «0», на выходе элементов D1.2-D1.4 появится
высокий логический уровень и будут светиться сегменты а, b, с, d, e и
f, т е
будет индицироваться «О».

Простой
индикатор переменного электрического поля скрытой проводки может быть
собран с
использованием в качестве регулируемого внешним электрическим полем
делителя
напряжения — резистора R1 и канала полевого транзистора. В
качестве
управляемого генератора импульсов использован генератор на микросхеме
К122ТЛ1.
Нагрузкой генератора для индикации являются высокоомные головные
телефоны типа
ТОН-1 (ТОН-2)

  При
наличии внешнего переменного электрического поля сигнал, наводимый на
антенну,
поступает на управляющий электрод полевого транзистора (затвор), что
вызывает
модуляцию сопротивления канала полевого транзистора. В итоге, падение
напряжения на делителе изменяется, что, в свою очередь, вызывает
появление
генерации с изменяющейся частотой.

Индикатор скрытой
проводки на микросхемах

Схема
состоит из  усилителя напряжения переменного тока, основой
которого служит операционный усилитель DA1, и генератора
колебаний
звуковой
частоты, собранного на триггере Шмитта DD1.1 (К561ТЛ1),
частотозадающей цепи R7C2 и пьезоизлучателе BF1.
При расположении антенны WA1 вблизи от фазового провода электросети
наводка ЭДС
промышленной частоты 50 Гц усиливается микросхемой DA1, в результате
чего
зажигается светодиод HL1. Это же выходное напряжение операционного
усилителя,
пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.
Ток, потребляемый микросхемами прибора при питании их от источника
напряжением
9V, не превышает 2 мА, а при включении светодиода HL1 — 6…7 мА.

Антенной
WA1 служит
площадка фольги на плате размером примерно 55х12
мм.

Схема индикатора скрытой проводки

Монтажную
плату размещают
в корпусе из диэлектрического материала так, чтобы антенна оказалась в
головной
части и была максимально удалена от руки оператора. На лицевой стороне
корпуса
располагают выключатель питания SA1, светодиод HL1 и звукоизлучатель
BF1.

Начальную
чувствительность прибора устанавливают подстроечным
резистором R2.
Безошибочно смонтированный прибор в налаживании не нуждается.

Искатель скрытой проводки

Сигнал
с антенны
длиной 200 мм подается на операционный усилитель DA1 К140УД7. С выхода
6 DA1
усиленный сигнал подается на формирователь прямоугольных импульсов DD1
К561ЛА7
и затем на выходной каскад VT1, зажигая светодиод HL1. Желательно не
только
видеть, но и слышать этот сигнал. Подключать звуковой излучатель
параллельно
R5, HL1 нежелательно. Для  звука
применен
мультивибратор, на таймере КР1006ВИ1. Конденсаторами С1, С2 подбирается
приятное звучание и его длительность, а также свечение светодиода HL2.
В этом
варианте частота звучания составляет 1,7 кГц.

В
зависимости от
изоляции и глубины залегания проводов в стене, чувствительность можно
менять
касанием руки общего провода через конденсатор малой емкости СЗ 27…33
пФ, не
доводя прибор до самовозбуждения. При большей емкости прибор возбудится.

Питается
прибор от
3-х пальчиковых батареек, соединенных последовательно, с общим
напряжением 4,5
В. При пользовании прибором необходимо отключать мощные источники
электрического поля: трансформаторы, телевизоры, лампы дневного света.
В
качестве звукоизлучателя используются пьезоизлучатель от телефонных
аппаратов.

Светодиоды
HL1 —
зеленого, HL2 — красного свечения.

Прибор
для
обнаружения повреждений скрытой электропроводки

Прибор
питается от
автономного источника напряжением 9v и заключен в алюминиевый корпус
размером 80x38x27 мм.

Принцип работы:

На
один из проводов
скрытой электропроводки подается переменное напряжение 12V от
понижающего
трансформатора. Остальные провода заземляют. Приспособление включается
и
перемещается параллельно поверхности стены на расстоянии 5…40 мм. В
местах
обрыва или окончания провода индикатор гаснет.
Приспособление
может быть также использовано для обнаружения повреждений жил в гибких
переносных и шланговых кабелях.

Детектор
скрытой проводки

Устройство избавит вас от возможного риска попадания сверлом в
провод при
сверлении отверстия в стене, позволит проследить путь провода и во
многих
других случаях, когда необходимо обнаружить скрытые провода.
В качестве датчика используется отрезок провода или металлический
стержень
диаметром около 5 мм и длинной 70…90 мм.
Принцип работы схемы.

На биполярных
транзисторах VT1 и
VT3 собран низкочастотный мультивибратор. Его рабочая частота
определяется в
основном номиналами конденсаторов, в качестве которых используют
алюминиевые,
ниобиевые или танталовые электролитические конденсаторы.
В исходном состоянии, когда щуп антенны прибора удален на значительное
расстояние от скрытой проводки, полевой транзистор VT2 находиться в
режиме
отсечки. При этом на резисторе R4, который включен в цепь истока
транзистора
VT2 (КП103Д), падает напряжение примерно равное 3,5 вольт. При этом
фиксируется
потенциал базы VT3 на уровне, который удерживает VT3 в насыщенном
состоянии и светодиод
светится непрерывно. Транзистор VT1 в это время находиться в режиме
отсечки.

Когда щуп антенны приближается к месту скрытой прокладки провода, где
поддерживается переменный потенциал 220В, электрическая составляющая
электромагнитного поля сетевого провода наводит на входе антенны
переменный
потенциал, равный сотням милливольт-единицам вольт. В этом случае
соответствующие полупериоды входного сигнала открывают VT2, ток через
резистор
R4 увеличивается, а значит, увеличивается и падение напряжения на нем.
Потенциал базы VT3 относительно эмиттера VT3 становиться низким,
переводя VT3 в
режим отсечки.
В результате светодиод начинает мигать, сигнализируя о наличии в этом
месте
скрытой проводки.
РАДІОАМАТОР 11’2001

ИСКАТЕЛЬ
СКРЫТОЙ ПРОВОДКИ

При обнаружении сигнала частотой 50 Гц
 cветодиод будет мигает с частотой примерно 1,56 Гц,
с такой же частотой пре­рывается звуковой сигнал.
       

Рассмотрим схему (рис.1).

 Антенна
W1 -кусок монтажного провода длиной около 25
см, расположенный по периметру узкой боко­вой части корпуса прибора. На
транзисторах
VT1 и VT2
сделан простой усилитель — фор­мирователь
логических импульсов. Он уси­ливает наведенный в антенне сигнал и
по­дает его
на счетчик
D1 (вход «С»). Из
числа   выходов
многоразрядного счетчика К561ИЕ16
аналог 4020BEY
(
D1)
используется выход только с весовым коэффициентом «16». То есть,
изменение
состояния этого выхода происходит через каждые 16 входных импульсов,
значит,
деление частоты составляет 32. Таким образом, при приеме сигнала
частотой 50 Гц
здесь будет частота 1,5625 Гц. С этой частотой и будет мигать светодиод
HL1, подключенный к данному выходу счетчика
через промежуточный транзисторный ключ — усилитель тока (
VT3),
чтобы облегчить работу с прибором есть
звуковой сигнализатор, сделанный на микросхеме
D2.
Это  
схема   
мультивибратора,  
выдающего импульсы частотой около 2000 Гц.
На элементах
D2.1 и D2.2
сделан собственно мультивибратор, а
элементы
D2.3 и D2.4
образуют усилитель напряжения,
поднимающий разность потенциалов между выводами пьезоэлектрического
звукоизлучателя 
BF1
в два раза, по сравнению с номинальным
напряжением уровня логической единицы.

Мультивибратор    
управляемый, — чтобы он 
работал нужно подать 
напряжение
логической единицы на вывод 13
элемента
D2.1. Таким образом,   
включение  
звука происходит одновременно с включением индикаторного
светодиода.
Питается приборчик от 9-вольтовой батарейки 
типа   «Крона».
Выключатель
S1 
кнопка без фиксации. Когда вы ищите проводку нужно держать его нажатым,

отпустили,  и
выключился (так сделано с
целью экономии батареи). Звуокоизлучатель
BF1
— от прозвонки неисправного мультиметра.
На  печатной  плате 
он располагается  над
микросхемой
D2 (приклеен).

Счетчик К561ИЕ16 можно заменить практически
любым двоичным КМОП-счетчиком, у которого есть выход с весовым
коэффициентом
«16». Это может быть К561ИЕ20, К176ИЕ1, или два включенных
последовательно
счетчика микросхемы К561ИЕ10. Но в любом случае потребуется переделка
печатной
платы.

Печатная плата показана на рисунке 2.

На плате
размещены все
детали кроме антенны и источника питания. Никакого налаживания не
требуется.

ДВОИЧНЫЙ ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ

Схема
пробника
состоит из щупа-антенны, транзисторного усилителя-формирователя
импульсов и
счетчика с индикаторным светодиодом на выходе.

Антенна
улавливает электромагнитное поле, и на выходе усилительного каскада на
VT1 и
VT2 появляются импульсы, частота которых равна частоте входного
сигнала. Если
это сигнал электропроводки, то, понятно, частота импульсов будет равна
50 Гц.
Если радиосигнал, то и частота импульсов будет много выше.

 Далее, импульсы
поступают на счетчик, который делит их частоту на 32. А на
выходе
счетчика включен индикаторный светодиод.

Работает
пробник так:

Когда
на антенну поступает электромагнитное поле, излучаемое
электропроводкой, на выходе счетчика возникают импульсы частотой около
1,56 Гц, и индикаторный светодиод мигает равномерно с такой же
частотой. Если же, на антенну
поступает
радиосигнал, частота которого значительно выше 50 Гц, — светодиод
мигает
значительно быстрее и это зрительно воспринимается как его постоянное
свечение
с несколько пониженной яркостью. Либо, он вообще не горит, так как
микросхема
серии К561 может и не пропустить сигнал слишком высокой частоты.

Для
отстройки от
слабых, но сильно мешающих радиосигналов есть переменный резистор R1,
которым
можно регулировать чувствительность входа пробника.

Питается
прибор от «Кроны», малогабаритной батареи напряжением 9V.

Пробник
сделан в виде миниатюрного устройства, размещенного в
подходящем корпусе.

Антенной
служит отрезок обмоточного провода диаметром
около 1
мм длиной около 30 см, который виток к витку намотан на передней части
корпуса
и закреплен.

 Переменный
резистор
R1 сделан из подстроечного резистора, с самодельной рукояткой (из
пластмассового винта-барашка).

Налаживания
практически не требуется, только если подбор размеров антенны.

ИСКАТЕЛЬ ПРОВОДКИ

Особенность
этого
искателя проводки в том, что он не только показывает расположение
электропроводки, но и может оценить её глубину расположения, а
так
же,
позволит обнаружить радиожучок или другое передающее или излучающее
радиоволны
устройство. С его помощью можно определить и то, какая часть проводки
более
нагружена, а какая менее.

Принципиальная схема
показана на рисунке.

Антенна W1
представляет собой жестяную пластинку размерами примерно 60x60 мм.
Пластинка связана со входом через переменный резистор R1, которым можно регулировать
уровень
чувствительности прибора. На транзисторе VT1 выполнен каскад, повышающий
входное сопротивление прибора.
Переменное напряжение наводок с его выхода через конденсатор С1
поступает на
измеритель уровня переменного напряжения, выполненный на микросхеме DА1-AN6884  (KA2284),
включенной по типовой схеме.  

Уровень
величины
напряжения сетевых наводок индицируется на шкале из пяти светодиодов HL1-HL5AЛ307.

Прибор
собран в
корпусе неисправного пульта дистанционного управления видеоплейером «Orion-688».
Батарея питания
состоит из трех элементов «АА» общим напряжением 4,5V. Два элемента размещены в
батарейном
отсеке пульта, и еще один непосредственно в корпусе пульта. Рядом с
этим
элементом расположена микросхема DА1 со светодиодами. Антенная
пластина
расположена в передней части корпуса и изогнута по форме.

СТРОИТЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ

Поможет
обнаружить электропроводку, замурованные в стену трубы и даже гвоздик
под
обоями. Глубина действия его не велика, гвоздик он найдет, если слой
обоев или
штукатурки над ним не более 5 мм, водопроводную трубу на глубине до
200мм, а
электропроводку на глубине до 20-30 мм.

Металлоискатель
состоит из генератора высокой частоты на транзисторе VT1, работающего на частоте около
100
кГц, детектора этого ВЧ напряжения на транзисторе VT2 и схемы индикации на
транзисторах VT3-VT4 и светодиоде HL1.

Катушки
генератора ВЧ
намотаны на ферритовом стержне (как для магнитной антенны
АМ-приемника). Режим
работы генератора устанавливают на краю срыва, но так, чтобы при
наличии всех
металлических предметов, которые входят в состав металлоискателя, он
работал.
При этом, транзистор VT2
под действием ВЧ напряжения, поступающего на его базу, открыт и
напряжение на
его коллекторе мало на столько, что транзисторы VT3 и VT4 закрыты и светодиод HL1 не горит.

При
приближении к магнитной
антенне металлического предмета начинается понижение амплитуды
генерации
ВЧ-генератора с его дальнейшим срывом. ВЧ напряжение на базе VT2 снижается или
перестает поступать и
транзистор VT2
закрывается. Постоянное напряжение на его коллекторе возрастает (через
резистор
R4) и
достигает такого
уровня, при котором происходит открывание транзисторов VT3 и VT4 и загорается
светодиод HL1.

Таким
образом,   перемещения
прибора относительно
металлического предмета будут индицироваться миганиями этого
светодиода, и
более того, малые перемещения будут так же влиять и на яркость свечения
светодиода. Но, это, разумеется, будет возможно только при точной
настройке
прибора, которую нужно время от времени повторять (для этого есть два  подстроенных 
резистора регуляторы, которых выведены
на верхнюю
панель пластмассового корпуса).

Катушки
L1 и L2 намотаны на
ферритовом стержне
диаметром 8 мм и длиной около 100 мм. Они расположены рядом. L1 содержит 120
витков, a L2 — 45 витков. Провод типа
ПЭВТЛ 0,35.

Питается
металлоискатель от импортного аналога батареи «Крона».

Налаживание.

Расположив
прибор вдали от металлических предметов (снимите часы с
руки)
подстраивают резисторы R3
и R5
(методом
последовательного приближения) так, чтобы прибор был на грани срыва
генерации
(светодиод светит на пониженной яркостью и неравномерно). Затем,
оставив в
покое R5
продолжают
подстройку R3,
так
чтобы светодиод погас. Далее, испытывают прибор на пятикопеечную
моменту,
добиваясь подстройкой R3
и R5
наибольшей
чувствительности.

ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ БЕЗ ИСТОЧНИКА
ПИТАНИЯ.

От множества аналогичных отличается тем, что не требует ни
собственного
источника питания, ни каких либо других приспособлений и измерительных
приборов.

Схема
прибора
показана на рис. 1.

В
качестве источника
энергии выступает та самая сеть переменного тока, которую мы и
опасаемся
повредить гвоздём, электродрелью или перфоратором. Когда на устройство
подано
напряжение питания сети переменного тока 220 В, накопительный
конденсатор
большой ёмкости быстро заряжается до напряжения открывания стабилитрона
VD1.  После зарядки
конденсатора С1 устройство можно
вынуть из розетки. Поиск места закладки проводки ведётся обычным
способом.
Когда антенна WA1 находится вблизи места пролегания электропроводки,
полевой
транзистор VT2 открывается с частотой сети переменного тока, светодиод
HL1
начинает светиться. Чем ближе расположена электропроводка, тем ярче он
светит.
Транзистор VT1 работает как микромощный стабилитрон с напряжением
стабилизации
6…10В. Дополнительно он выполняет функцию высокоомного разрядного
резистора
для перехода затвор-исток транзистора VT2. Кнопка SB1 без фиксации
положения
предназначена для проверки наличия достаточного заряда на обкладках
конденсатора С1. С понижением напряжения на конденсаторе С1
чувствительность
прибора не изменяется, но снижается яркость свечения светодиода. Сенсор
Е1
предназначен для того, чтобы при необходимости можно было увеличить
чувствительность прибора, для чего нужно прикоснуться к нему пальцем.
Резисторы
R3, R4 ограничивают импульсный ток, протекающий через диоды
выпрямительного
моста в момент включения устройства в сеть.  Детали: Вместо транзистора КП504А можно
применить любой из серий
КП501, КП502, КП504, КР1064КТ1, КР1014КТ1, ZVN2120, BSS88, BSS124.

Цоколёвка
некоторых транзисторов приводится на рисунке.

Светодиод
HL1 должен
быть суперярким, например, «красные» L-1503SRC/F, L-1503SRC/E,
L-1513SRC/F.
Неплохие результаты были получены и с современными суперяркими
светодиодами
голубого и белого цвета свечения. Стабилитрон VD1 любой маломощный на
напряжение стабилизации 18…20 В, например, 1N4747A, КС218Ж, КС520В.
При   отсутствии

таких
стабилитронов
можно установить два, включенных последовательно Д814Б1 или 1N4739A.
Вместо
диодного моста VD2 можно применить любой малогабаритный из серий КЦ422,
КЦ407,
DB101… DB107, RB151… RB157. Конденсатор С2 плё­ночный типов К73-17,
К73-24,
К73-39 на рабо­чее напряжение 630 В и ёмкостью 0,1…0,25 мкФ Оксидный
конденсатор С1 — самая крупная деталь устройства, автор использовал
относительно малогабаритный фирмы «Philips». Этот конденсатор должен
иметь как
можно меньший ток утечки. Конденсаторы с большим рабочим напряжением
обычно имеют
меньший ток утечки среди конденсаторов одной ёмкости и фирмы. Сенсор
можно
изготовить из металлического корпуса неисправного транзистора,
например, КТ203,
МП16… МП42.

Если
прибор будет работать
неустойчиво, то
следует к выводам затвора и истока VT2 подключить высокоомный резистор
сопротивлением 100… 200 МОм. При желании устройство можно
модернизировать.
Например, следующим образом. Если последовательно со стабилитроном VD1
установить светодиод, (анодами вместе), то этот светодиод будет
сигнализировать
о полной зарядке конденсатора С1. Если последовательно со светодиодом
HL1,
соблюдая полярность, установить пьезокерамический излучатель звука со
встроенным генератором, например, НРА17АХ, то совместно со свечением
светодиода
HL1 звукоизлучатель будет генерировать прерывистый тон — прибор станет
информативнее. При настройке устройства не забывайте отключать его от
сети.

Следующая схема
содержит электростатический тип
обнаружения проводки.

Схема:

На антенну
наводится напряжение от проводки. Оно детектируется
диодом
на U1A и C5. На U1D собран генератор, управляемый напряжением, U1C и Q3
– это усилитель для
пьезопищалки. 

Работаем
так –
прислоняем к стене, где точно нет проводки, регулируем чувствительность
так, чтобы
детектор слегка кряхтел. Двигаем и там, где тон становится выше, там и
есть
наша проводка.

*Функциональные аналоги: K544УД14, КМ1401УД4, 1435УД4, LF347, TLO84

Источник: http://bsvi.ru/


 
Тестеры
напряжения «карандашного»
типа: S
Line GK2, MEET MS-48NS, YADITE 8848

Технические
характеристики

Параметр

Значение

Измеряемые
параметры

·         напряжение
постоянное

·         напряжение
переменное

·         прозвон
цепи

Определение
переменного напряжения

Контактным
методом

70
… 250 В

Бесконтактным

70
… 1000 В

Тест
постоянного
напряжения

до
250 В

Тест
полярности

1.2
… 36 В

Испытание
презвонкой

«O»
= 0.5 МОм;
«L» = 0…50 МОм;
«H» = 0…100 МОм

Тест
батарей

есть

·         Частота
переменного тока 50 … 500 Гц

·         Питание:
две батареи SR 1.5 В (типоразмер «AAA»)

Условные
обозначения

«0»
— контактный тест сети
переменного тока.

«L» — бесконтактный тест, низкая чувствительность.

«H» — бесконтактный тест, высокая чувствительность.

НАЗНАЧЕНИЕ: контактное и бесконтактное
обнаружение переменного напряжения; определение фазы переменного
напряжения;
определение полярности постоянного напряжения; позвонка непрерывности
цепи;
проверка диодов, транзисторов и конденсаторов.

Устройство:

Схема прибора YADITE 8848:


Сигнализатор
скрытой проводки Е121 (ДЯТЕЛ)

 Назначение:

   проверка
правильности фазировки (подключения)
бытовых элект­росчетчиков без снятия пломбы и защитной крышки;

   обнаружение
скрытой проводки;

   обнаружение
фазного провода на изолированных
и неизолированных токоведущих частях электрических сетей переменного
тока без
непосредственной связи с этими частями;

   проверка
исправности предохранителей,  плавких
вставок, обрывов в
проводах находящихся
под напряжением;

   индикация
с поверхности земли наличия
напряжения на ВЛ 10 кВ и выше;

   индикация
с поверхности земли наличия
напряжения контактной сети троллей­бусов и трамваев;

   обнаружение
электромагнитных полей ПК,
телевизоров и др. бытовой техники;

   обнаружение
утечек  СВЧ-печей.

Основная область
применения
— при обслуживании электросчетчиков,
электро­установок и электрических
сетей. Принцип действия сигнализатора основан на
ис­пользовании
электростатической индукции в переменном электрическом поле,
возни­кающем
вокруг токоведущего проводника.

Сигнализатор обеспечивает проверку наличия
напряжения в цепях переменного тока номинальным напряжением 380 В
промышленной
частоты без электрического контак­та с проводником

Сигнализатор имеет
четыре
диапазона чувствительности к элект­рическому полю, создаваемому
проводником

«1» — 0…10 ±5 мм, «2» — 0…100 ±50 мм, «3» —
0…300 ±150 мм, «4» —
0…700
±350 мм.

Сигнализатор имеет режим самоконтро­ля. Габаритные
размеры —
210
x80x45 мм.   
Масса прибора — 250 г.

Схема
прибора аналогичного промышленному Е121
.

вариант самостоятельного изготовления.

 

Детали:

ВЧ кабель сплошной экран и кнопки без фиксации (тип  304,
8*8mm push ON).

Полевой транзистор N-JFET типа, BF-245 затвор транзистора G подпаян к
навесному монтажу,
на фото видно показанно как это сделать.

Потом, эту часть навесного монтажа полевого транзистора, экранируем, на
общий провод.
Внимание, экран ВЧ
кабеля на общий провод не припаивается, соблюдайте точность подключения
по схеме!

Общий вид печатной платы.


Настройка схемы сводится только к подбору порога чувствительности
подстроечным резистором 47 ком.

 

Файл печатной платы в архиве
Plata_«D».


Схема встраивается в подходящий корпус, например от пульта ДУ
телевизора.

Источник: http://radiomaster.com.ua/


Логический пробник
для статических и динамических режимов

При
подаче на вход
пробника импульсов с частотой до 25 Гц чередование цифр «О» и
«1» на индикаторе можно различить, при частотах свыше 25 Гц начинает
сказываться влияние конденсатора С1. В результате яркость свечения
сегмента d
резко уменьшается и индицируется буква «П», что означает присутствие на
входе
пробника импульсов с относительно высокой частотой.

При
отсутствии сигнала
на входе элемента D1.1 низкий логический уровень, на входах D1.2 — D1.4

высокий. Сегменты индикатора не светятся.

Если на вход пробника поступает уровень, соответствующий логической
«1», на выходе элемента D1.1 будет логический «0», на
выходе D1.2 — логическая «1», элементы D1.3 и D1.4 остаются в
первоначальном состоянии.

При
этом светятся
сегменты b и с
и индицируется цифра «1».

Когда
на входе
пробника будет логический «0», на выходе элементов D1.2-D1.4 появится
высокий логический уровень и будут светиться сегменты а, b, с, d, e и
f, т е
будет индицироваться «О».

Логический пробник на NE556

Выполнен
на базе микросхемы NE556 и имеет индикацию на светодиодах. При
наличии
логической единицы на входе устройства светодиод D2 светится ярко, если
же
присутствует логический ноль, то светодиод не горит. Светодиод D2
пульсирует с
частотой входного сигнала

Микросхема
NE555
(отечественный аналог КР1006ВИ1)

Микросхема
NE556 представляет собой те же
таймеры,
но сдвоенные (два в одном корпусе)

Copyright
©2011 SHC Odessa
.

Обзор электронной индикаторной отвертки

Индикатор электричества

Бесконтактный тестер напряжения. Как пользоваться индикаторной отверткой. Индикатор фазы.

Похожие:

Наш проект живет и развивается для тех, кто ищет ответы на свои вопросы и стремится не потеряться в бушующем море зачастую бесполезной информации. На этой странице мы рассказали (а точнее — показали :) вам Как пользоваться tester yadite 8848. Кроме этого, мы нашли и добавили для вас тысячи других видеороликов, способных ответить, кажется, на любой ваш вопрос. Однако, если на сайте все же не оказалось интересующей информации — напишите нам, мы подготовим ее для вас и добавим на наш сайт!
Если вам не сложно — оставьте, пожалуйста, свой отзыв, насколько полной и полезной была размещенная на нашем сайте информация о том, Как пользоваться tester yadite 8848.

Как сложно бывает, в наш век информационных технологий, успевать за всеми новшествами научно технического прогресса. Иногда чтобы разобраться с функционалом той или иной программы приходиться перерыть половину интернета. На данной странице мы покажем вам как пользоваться тестером yadite 8848 и избавим вас от долгих поисков в сети.

Многие проблемы с компьютерами, ноутбуками, смартфонами, планшетами и прочими гаджетами возникают, казалось бы на ровном месте. Хочется подключить WI-FI, но устройство не видит сеть. Хочется отключить платную услугу мобильного оператора, но она так запрятана, что проще плюнуть на это.

Но теперь не нужно бороздить просторы интернета для поиска ответов на эти вопросы. Здесь мы собрали для вас самую полную информацию о том как пользоваться тестером yadite 8848. И подана эта информация не в виде длинных и непонятных описаний, а в виде пошаговых видео руководств. Надеемся что вы найдете здесь то что искали!

Yadite 8848 Инструкция Rating: 9,1/10 1208 votes

Тестер yadite 8848 инструкция

  1. Yadite 8848 Инструкция
  2. Tester Yadite 8848 Инструкция

Инструкция

Предназначен для проверки наличия переменного напряжения, определения провода/гнезда с фазой и точки обрыва в проводах с переменным напряжением, точек с высоким напряжением и скрытой проводки. Проверка осуществляется контактным и бесконтактным методом. Применим в домашних условиях. Технические характеристики:. Определение переменного напряжения:.

Инструкция

Yadite 8848 Инструкция

контактным способом от 70 В до 250 В. бесконтактным способом от 70 В до 10000В. Определение постоянного напряжения — до 250В. Определение полярности — от 1,2В до 36 В. Проверка целостности цепи: “О” от 0 до 5 МОм, “L” от 0 до 50 МОм, “Н” от 0 до 100МОм. Определение микроволнового излучения от 5 мВт/см2. Технические параметры.

2 — 6,144 Пиковая текстурная скорость заполнения (Gtexel/sec) rev. 2 — 512 Частота памяти (МГц) rev. 2 — 660 Блоков пиксельных шейдеров (пиксельных процессоров) 36 Блоков вершинных шейдеров (геометрических процессоров) 8 Текстурных блоков 12 Число слоев PCB 10 Разрядность шины памяти (бит) 256 Тип памяти GDDR3 Интерфейс шины PCI-Express x16 RAMDAC (МГц) 2 x 400 Пиковая пиксельная скорость заполнения (Gpixels/sec) rev. Видео драйвер radeon x1900. 2 — 6,144 Пиковая полоса пропускания памяти (GB/sec) rev. 1 — 38,4 rev.

Tester Yadite 8848 Инструкция

MS-48M (12-2016) MS-48M, Предназначен для проверки наличия переменного напряжения, определения провода/гнезда с фазой и точки обрыва. Скачать tester yadite 8848 инструкция, старлайт 8 класс учебник читать онлайн, код продукта need for speed. Инструкция tester yadite 8848 doc: go.mail.ru: н/. Инструкция для Philips Series 4000 HD8848/09 pdf 5.9 Mb Скачать сертификат соответствия pdf.

Понравилась статья? Поделить с друзьями:
  • Testo 174h инструкция по эксплуатации
  • Teplowest optima инструкция на русском
  • Testis compositum инструкция по применению
  • Teplov ru инструкция монтажа дымохода сэндвич трубы
  • Teplocom ts prog 2aa 8a инструкция